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Abstract

Current iterated learning experiments  use meaning spaces that are discrete, finite, pre-

specified, and low-dimensional. Such meaning spaces  are poor representations  of the 

world. For this reason,  we have conducted two experiments to look at the cumulative 

cultural evolution of  category structure in an infinite meaning space.

In the first experiment, the number of words used to describe the stimuli collapses 

dramatically after only a few generations. Within a few more generations,  a system emerges 

that arbitrarily divides the space into a small number of categories  pertaining primarily to 

the size and shape of the stimuli. In the second experiment,  we apply an artificial 

constraint which prevents the size of the languages from collapsing. This constraint was 

implemented to model the pressure for expressivity that exists in languages when they are 

used functionally for communication. We predicted that this  would allow compositional 

structure to emerge so that the space could be carved up in more finely grained and/or 

higher dimensional ways using a compressible linguistic system. However,  there was  little 

sign of  compositionality emerging under the parameters of  this experiment.

Although the meaning space presented here is a simple one, we hope that this  project 

represents  a first step towards thinking about how iterated learning experiments deal with 

the problem of discrete infinity. We briefly discuss the background literature,  then present 

the methods and results  for this  project, and end with some discussion about how the 

results relate to our research questions.
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1. Introduction

This  chapter provides a short introduction to the concepts  that will be discussed in this 

dissertation. Section 1.1 covers general explanations for the evolution of language. Section 

1.2 describes  the iterated learning paradigm. Section 1.3 discusses meaning spaces  and 

categorical perception. Section 1.4 reflects  on the meaning spaces used in previous 

experiments. Section 1.5 summarizes the research questions and hypotheses that will be 

explored in this project.

1.1. Explanations for language

Language is arguably the defining characteristic of our species,  and asking where language 

comes from is  deeply connected to questions  about what it means to be human. In their 

classic paper,  Pinker and Bloom framed the evolution of language in terms  of a 

‘conventional neo-Darwinian process’  (1990,  p. 707). This seems natural given that 

Darwin’s  (1859)  theory of natural selection has been highly successful in explaining the 

complexity we observe in nature. However, natural selection has far-reaching consequences 

beyond biology alone. Human cultures also adapt and evolve, providing us  with two modes 

of inheritance: the genetic and the cultural (Mesoudi, 2011; Richerson & Boyd, 2005). 

Indeed,  Maynard Smith and Szathmáry (1995)  cite language and culture as the most recent 

in a series  of evolutionary transitions  that have irrevocably changed the way information is 

stored and transmitted. In addition,  the evidence for an innate, domain-specific language 

faculty (supported by e.g. Chomsky,  1965;  Jackendoff,  2002;  Pinker,  1994) has been 

questioned from the perspectives of language acquisition (Pullum & Scholz,  2002), 

neuroscience (Schoenemann, 2009), and typology (Evans & Levinson, 2009).

Since the publication of Pinker and Bloom’s (1990) paper, there has been rising 

interest in the evolution of language, and various alternative scenarios have been proposed 

that place greater emphasis  on cultural evolutionary dynamics (e.g. Christiansen & Chater, 

2008; Croft, 2000;  Kirby,  1999). Furthermore,  new tools and methods have made the 

scientific investigation of such dynamics  possible (see Caldwell & Millen, 2008;  Mesoudi & 

Whiten,  2008; Scott-Phillips & Kirby,  2010 for reviews). These methods  have included 
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mathematical (e.g. Griffiths  & Kalish, 2007), computational (e.g. Oliphant, 1996),  and 

experimental (e.g. Garrod,  Fay,  Lee,  Oberlander, & MacLeod, 2007)  models, as  well as the 

exploration of large datasets (e.g. Lupyan & Dale,  2010). In particular, cultural evolutionary 

approaches  have shown that fundamental properties  of language can emerge through 

social negotiation (e.g. Scott-Phillips, Kirby, & Ritchie, 2009; Steels,  1997; Zuidema & de 

Boer,  2009)  and cultural transmission (e.g. Kirby,  Cornish,  & Smith, 2008; Kirby, Dowman, 

& Griffiths, 2007; Smith, Brighton, & Kirby, 2003).

1.2. Iterated learning

Besides biological and cultural evolution, Kirby and Hurford (2002)  argue that (a)  a third 

complex adaptive system, learning, should also be accounted for, and (b)  the structural 

properties of language can be explained by the interactions between these three systems. 

This  is  illustrated in a feedback loop in Figure 1.1. Kirby and Hurford (2002) place 

particular emphasis on the repeated induction and expression of language across 

generations of  language user, a process they term ‘iterated learning’.

1.2.1. Theoretical outline

Iterated learning refers to ‘a process  in which an individual acquires a behavior by 

observing a similar behavior in an individual who acquired it in the same way’  (Kirby et al., 

2008, p. 10681). Kirby and Hurford (2002, p. 123) describe four basic components of an 
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Figure 1.1 Diagram illustrating the interaction between three complex adaptive systems working on three 
timescales:  biological evolution, cultural evolution, and learning. Diagram based on a combination of Figure 1 
in Kirby (2002b, p. 189), Figure 1 in Kirby et al. (2007, p. 5242) and Figure 4 in Smith et al. (2003, p. 541).

 


 





















 























   





 















iterated learning model: (1) a meaning space, (2)  a signal space,  (3) one or more language-

learning agents, and (4)  one or more language-using adult agents. The first cultural 

generation of agents is given a set of random mappings between the meaning space and 

signal space, and they construct hypotheses to explain these mappings. This  generation of 

agents subsequently provides the input for a new generation based on the inferences  they 

have made. The second generation then trains a third generation and so forth until either a 

specified number of generations has  elapsed or the languages stabilize in some way. 

Crucially,  the mappings  produced by any given agent will include mappings that the agent 

never observed in its  training input,  due to the presence of a bottleneck on transmission1. 

When treated as  a complex adaptive system,  language can adapt to this bottleneck, as  well 

as to the cognitive biases of  its learners (see references in the following sections).

1.2.2. Computer simulations

Early work in iterated learning relied on computational simulations  of populations  of 

agents. This body of work showed that linguistic properties can arise epiphenomenally 

during cultural transmission (e.g. Hurford, 1989;  Kirby,  2002a; Smith,  2004). For example, 

Smith et al. (2003) used agent-based modelling to show that compositionality arises as an 

adaptation to the poverty of the stimulus,  since only structured, generalizable languages are 

stable under the constraint of  a transmission bottleneck.

1.2.3. Experiments with human participants

Computer simulations of iterated learning were criticized on the grounds that the 

cognitive behaviours  of the agents  were unrealistic (Bickerton, 2007,  p. 522). Responding 

directly to this  criticism,  and taking cues from earlier experimental work2,  Kirby et al. 

(2008)  devised an experimental analogue of the iterated learning paradigm using adult 

human learners. In experiment 1,  there was no pressure for participants to be expressive 

and, as a consequence of this, the languages rapidly collapsed to a few distinct words. 

Kirby et al. (2008) refer to this  as  ‘systematic underspecification’,  which represents  one way 

in which languages  can circumvent the bottleneck. In experiment 2, the authors 

implemented a filtering system so that the subset of the language that a participant saw in 
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animals  (e.g. Horner, Whiten, Flynn, & de Waal, 2006;  Laland & Williams,  1997)  and humans (e.g. 
Galantucci, 2005; Selten & Warglien, 2007).



training was always composed of a set of unique signals, guiding the languages away from 

underspecification. Although artificial, this  modification was intended as  an analogue of 

the pressure for expressivity that exists  in functional languages. In this  experiment,  small 

sets  of meaningful, recombinable units emerged corresponding to the dimensions of the 

meaning space. The authors refer to this outcome as ‘systematic compositional structure’.

A variety of other iterated learning experiments have since been conducted. Smith and 

Wonnacott (2010)  have used the paradigm to show that the predictability of a grammatical 

marker increases  cumulatively as a language is culturally transmitted, suggesting that 

iterated learning can offer an explanation for language regularity. Perfors and Navarro 

(2011)  have used a combination of Bayesian modelling and experimental work to show that 

iterated learning gives  rise to signal structures that reflect the structure of the meaning 

space. Verhoef (2012) has  shown that iterated learning can explain the emergence of 

combinatorial structure in whistled songs.

1.3. Meaning spaces and categorical perception

We have briefly alluded to the concept of meaning spaces above. Here we describe them 

more formally. Gärdenfors (2000),  among others, promotes a general approach to 

semantics  in which meanings are represented as points in a convex ‘conceptual space’  so 

that the distance between two points  corresponds to their similarity3. An individual’s 

conception of the world is  modelled in terms of an n-dimensional metric space with points 

in the space representing objects, and regions of  the space representing concepts.

1.3.1. Metric spaces, similarity, and the universal law of  generalization

A metric space is  a set on which a distance function has  been defined between 

elements of that set (Ó Searcóid, 2007,  p. 2). For example, the distance function d between 

any two elements  a and b in the set of real numbers � could be defined as the absolute 

value of the difference, i.e. |b − a|. In this  case,  we say that the space � is endowed with the 

metric d(a, b) = |b − a|, yielding the metric space (�, d). A distance function d on a set X is 

valid if,  for all a,  b, and c in X, four conditions are met: d(a, b) ≥ 0 (non-negativity); d(a, b) 
= 0 iff a = b (the coincidence axiom);  d(a, b) = d(b, a) (symmetry); and d(a, b) ≤ d(a, c) + 

d(c, b) (the triangle inequality). Common examples of distance metrics include the 
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Euclidean distance, Hamming distance, and Manhattan distance.

By using a metric space as a model of the underlying physical parameter space, we can 

proceed to measure the similarity between two meanings by transforming the measure of 

distance into a measure of similarity. This is  typically performed using an ‘exponentially 

decaying function of distance’, such as  [Q,R = M−K·LQ,R where c is a sensitivity parameter 

(Gärdenfors, 2000, p. 20). This  is referred to by Shepard (1987) as the ‘universal law of 

generalization’. He argues that generalization ‘govern[s] the behaviors of all sentient 

organisms’  (1987, p. 1317), and that the mathematical concept of a metric space has been 

evolutionarily internalized as  the mechanism for generalizing from one situation to another. 

Regardless of the truth of this,  metric spaces provide a useful means  for modelling how 

individuals conceptualize the world.

1.3.2. Categorical perception

Categorical perception was originally intended to explain the categorical nature of 

speech perception (Liberman,  Harris,  Hoffman, & Griffith,  1957),  but has  since been co-

opted to explain the discrete perception of continuous sensory phenomena (see Harnad, 

1987). It is  suggested that categorical perception operates by a process  of induction. For 

example, if we know that x1 is  an element of X, and we know that x2 is  similar to x1,  then it 

follows that x2 must also be an element of X. In terms of the psychological spaces  we 

mentioned above, Harnad (1987) describes categorical perception as forming within-

category compression (pinching the space)  and between-category separation (stretching the 

space), such that members  of a single category tend to be perceived as  more similar and 

members  of separate categories tend to be perceived as more different. There is  ongoing 

debate regarding the degree to which categorical perception is innate versus learned and 

the degree to which it is  influenced by language (see Goldstone & Hendrickson, 2009 for 

some discussion). Aside from speech perception, categorical perception has  been widely 

studied in the perception of colour (e.g. Winawer et al.,  2007), faces (e.g. Beale & Keil, 

1995), and shape (e.g. Roberson, Davidoff, Shapiro, 2002).

1.4. Meaning spaces in previous iterated learning experiments

Previous iterated learning experiments  have relied primarily on meaning spaces  that are 

discrete, finite,  pre-specified, and low-dimensional. Kirby has  described these as ‘fixed, 

monolithic meaning space[s]’ (2007, p. 256). Table 1.1 provides  a catalogue of the meaning 
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spaces used in a selection of previous  experiments. This is  by no means a complete list,  but 

it highlights the relatively small scale of  the meaning spaces that have been used previously.

Table 1.1 Catalogue of meaning spaces used in previous iterated learning experiments

Study Type of meaning space Magnitude

Brown (2008) Discrete 3 dimensions, 27 meanings

Carr (2012) Discrete 3 dimensions, 27 meanings

Cornish (2011) (experiments II—IV) Discrete 3 dimensions, 27 meanings

del Giudice (2012) (experiment 2) Discrete 4 categories, 20 meanings

Fay et al. (2010) Discrete 4 categories, 20 meanings

King (2011) Discrete 3 dimensions, 27 meanings

Kirby et al. (2008) Discrete 3 dimensions, 27 meanings

Matthews (2009) Continuous 2 dimensions, 100 meanings

Murray, K. (2009) Discrete 3 dimensions, 27 meanings

Murray, L. (2010) Discrete 3 dimensions, 27 meanings

Perfors and Navarro (2012) Continuous 2 dimensions, 36 meanings

Seyfarth (2010) Discrete 3 dimensions, 27 meanings

Smith and Wonnacott (2010) Discrete 2 dimensions, 8 meanings

Winters (2009) Discrete 3 dimensions, 18 meanings

1.4.1. Discrete meaning spaces

The meaning space in Kirby et al. (2008) is  three-dimensional with each dimension 

(colour, shape, and movement) varying over three discrete qualities for 27 meanings. This 

basic structure has been replicated in several other experiments (e.g. Brown,  2008; Murray, 

2009; Winters,  2009)  with some variation. To take another example,  the space in Smith 

and Wonnacott (2010) has two discrete dimensions  (animal and plurality)  for a total of 

eight meanings (four animals in the singular or plural).

1.4.2. Continuous meaning spaces

Matthews (2009)  implemented a continuous meaning space comprising 100 stimuli 

that were produced by morphing triangles into rectangles  in two orientations. This 

produces a relatively complex space, since the way in which it will be divided by 

participants  is  not immediately obvious. This  was clear from the results: participants  in one 

chain structured the language by rotation,  while in the other chains the structure was non-

rotational. In Perfors and Navarro (2012),  the meaning space has  two dimensions (colour 

and size) that varied continuously in the first condition. These do not fully alleviate the 
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problem because the number of dimensions remains low, the structure of the space 

remains pre-specified, and the number of  possible meanings remains finite.

1.5. Proposed research

There is  a disconnect between the complex conceptual spaces used by humans to 

understand the world and the simple meaning spaces  used in current experiments. For 

example, our perception of certain quality dimensions may be non-linear, as  is the case in 

the perception of colour (perceived as circular)  or pitch (which has a logarithmic 

relationship with frequency). We propose to address this  issue here by implementing an 

infinite meaning space. This  is  an important step to take because a crucial aspect of 

language is  the property of ‘discrete infinity’ – its  ability to use a discrete set of symbols to 

talk about an infinite set of  meanings (Studdert-Kennedy, 2005).

1.5.1. Research questions

This  project attempts to answer two research questions. Firstly,  does categorical 

structure arise from iterated learning when the meaning space is infinite in magnitude? 

Secondly, and if so,  what is  the effect on the structure of the signals? Do we observe the 

emergence of compositional structure such that recombinable linguistic units systematically 

map to specific areas of the meaning space? These questions will be evaluated using 

experimental iterated learning.

1.5.2. Hypotheses

Three outcomes are hypothesized. Hypothesis I: we expect the languages to become 

increasingly learnable over the course of the cultural generations. Hypothesis II: we 

expect to see the emergence of categorical and/or compositional structure as  mechanisms 

for circumventing the bottleneck on transmission. Hypothesis III: given that Hypothesis  I 

and Hypothesis II are supported, we expect to show that an increase in learnability can be 

explained by an increase in structure. The following chapter describes the methods that will 

be used to evaluate these hypotheses.
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2. Methods

This  chapter outlines the methods used to implement an infinite meaning space. Section 

2.1 describes the experimental setup, including the procedure and stimuli. Section 2.2 

describes  the methods  used to analyse the data, including a measure of learnability and 

structure. Section 2.3 describes the statistical methods used to evaluate the hypotheses.

2.1. Experimental setup

Since infinite meaning spaces  have gone unexplored in experimental iterated learning, we 

have adopted a simple approach in this  project using a procedure closely related to Kirby et 

al. (2008). The population model is a linear diffusion chain of 10 participants,  each 

representing one cultural generation. Four chains  were run in each of two experiments. 

Like Kirby et al. (2008),  experiment 1 does not enforce expressivity,  while experiment 2 

does.

2.1.1. Recruitment of  participants

Participants  were recruited using the University of Edinburgh’s SAGE website 

(Appendix A). It was  described as a language learning task in which participants had to 

learn the language of the Flatlanders4. Forty participants completed experiment 1,  and 

forty participants completed experiment 2. The experiment was conducted in accordance 

with the ethics procedures of the School of Philosophy, Psychology and Language Sciences. 

Each participant was paid £5.50 for completing the study. A £20 voucher redeemable at 

Amazon.co.uk was offered as  a prize for the participant who was best able to learn the 

language5.

2.1.2. Procedure

In the training phase,  participants were exposed to three passes over a set of 48 stimuli 

for a total of 144 presentations. The stimuli were taken from an infinite meaning space of 

8

4 In reference to E. A. Abbott’s (1884) novella, Flatland: A romance of  many dimensions.
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This prize was offered to incentivize participants to learn the language as well as possible.



triangles  and were presented with their labels in the Flatlander language. Triangle stimuli 

were presented first with their associated labels  appearing after a 1-second delay. 

Participants  also heard the label pronounced by a speech synthesizer simultaneously with 

the presentation of the written form. After every third triangle,  the participant was  shown 

one of the previous  three triangles again and prompted to type its  name. We refer to this as 

a mini test. Feedback was given in the form of a green6  checkmark or red cross  along with 

an audible sound. Over the course of the three passes,  each of the 48 items  was  mini-tested 

exactly once. This training procedure was  chosen to maintain participants’ attention in 

what could otherwise be a very passive component of the experiment. In the test phase, 

participants  saw 96 stimuli,  none of which they had seen in training,  and were prompted to 

type in the associated string for each one. No feedback was  provided during the test. The 

task was  explained to participants in a written brief (Appendix B)  and orally (Appendix C). 

Figure 2.1 shows a photograph of  the setup.

The experiment was  coded in HTML and JavaScript with a PHP backend running 

locally on the computer terminal (Appendix F) and presented in Google Chrome (in full-

screen “Presentation Mode”)  on a 13" MacBook Air. Figure 2.2 shows  screenshots  of the 

interface. The screen was  positioned 70cm from the edge of the desk at an angle of 105°. 

Methods 9
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Figure 2.1 Photograph of the experimental setup.
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Figure 2.2 Screenshots of the computer interface. (A) Training instructions; the participant presses the enter 
key to begin. (B) Training item with its associated label.  (C) After every third training item, the participant  is 
shown one of the previous three training items and prompted to type its name. (D) If  correct, the participant 
sees a green checkmark and the word is highlighted in green. (E) If  incorrect, the participant sees a red cross 
and the correct answer is shown in red italics. Screenshots  (B) through (E) are then repeated until the entire 
training set has been covered three times with each of the training items being mini-tested exactly  once. (F) 
Thirty-second break between the training and test phases; includes reminder instructions for the test.  (G) Test 
item: the participant sees a novel stimulus and is prompted to enter its name. This is repeated 96 times until 
both the DYNAMIC and STABLE SETS have been covered in an interleaved order. (H) Completion message.

A B

C D

E F

G H



An Apple Wireless  Keyboard was used for input, and a custom keyboard layout blocked all 

keys except the lower-case alphabetical keys,  enter key, and backspace key. Vocalizations of 

the strings were played through Sennheiser HD 219 headphones. On finishing the 

experiment,  participants completed a post-test questionnaire (Appendix D)  and were 

offered a debrief  to take away with them (Appendix E).

2.1.3. Transmission

Figure 2.3 illustrates how the languages  were transmitted. A set of 48 stimuli (referred 

to as a DYNAMIC SET)  is  randomly generated at every generation, such that no two 

participants  will ever be trained on the exact same stimuli. The purpose of the DYNAMIC 

SET is to model the infinity of nature, where no two people ever observe the exact same 

meaning. In addition,  there is a single set of 48 stimuli,  the STABLE SET,  that remains the 

same for all participants in both experiments. Participants  are never trained on the STABLE 

SET,  only tested on it. Its  purpose is to provide a constant set of stimuli on which we can 

measure learnability and structure.

The training phase involves learning the mapping between the previous participant’s 

output WORD SET and DYNAMIC SET (presented in randomized order). The test phase 

involves  providing labels for (a)  the 48 stimuli in a randomly generated DYNAMIC SET and 

(b) the 48 stimuli in the STABLE SET (presented in randomized order) for a total of 96 test 

items. These two components  of the test phase are interleaved to avoid the possibility that 

participants  might be fatigued by the time they reach the second component. Each 

participant returns  two WORD SETS as output, a WORD SET that labels their DYNAMIC SET 

(for transmission to the next participant), and a WORD SET that labels  the STABLE SET (for 

analysis). WORD SETS referred to as  0 and 0! in Figure 2.3 are randomly generated sets of 

48 words used to initialize a chain.

2.1.4. Triangle stimuli

The STABLE SET was randomly generated prior to running the experiments; the 

triangle stimuli in DYNAMIC SET 0 were randomly generated prior to beginning a chain 

(initial_set_generator.py; Appendix F). The triangles in subsequent DYNAMIC SETS were 

randomly generated on demand during each participant’s  test phase and were saved at the 

end of the test as a set of coordinates  for reconstruction during the subsequent participant’s 

training. To generate a triangle stimulus,  three points are chosen at random in a 480×480-

pixel space and joined together with 2-pixel-wide lines. The space was enclosed in a 
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500×500-pixel dashed box. One point (determined randomly)  has  a black circle with a 

radius  of 8 pixels placed over it,  and is referred to as  the orienting spot. Its  function is  to 

give the participant some context about which way the triangle is oriented. The number of 

distinct stimuli that can be generated by this  simple algorithm is  approximately 6 × 1015 (6 

million billion)7. To all intents and purposes  this represents  an infinite number of possible 

triangles,  limited only by the density of the pixels on the display8. See Figure 2.4 for two 
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7 (4802)3/2. Divide by 3 if  assuming the orienting spot does not distinguish a vertex.
8 If we assume that participants cannot distinguish between two triangles whose vertices are within r pixels of 
each other, the probability of having two triangles perceived as identical can be approximated using (4802/
πr2)3/2.  At 10 pixels, this  probability is approximately 1 in 200 million. At 20 pixels  it falls  to 1 in 3 million, 
which is still hundreds of  times greater than the total number of  triangles observed by all 80 participants.

Figure 2.3 Diagram illustrating the experimental procedure. The blue circles represent the participants in a 
diffusion chain. Each participant  is trained on one set of experimental stimuli, but tested on two different sets: 
a randomly generated set  (referred to as a DYNAMIC SET) and a set that remains the same across both 
experiments (referred to as the STABLE SET). A  DYNAMIC SET,  along with the words used to label it, forms the 
input for the subsequent participant. The sets presented in red are randomly generated to initialize each chain.
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examples of  the triangle stimuli and Appendix G for the full STABLE SET.

2.1.5. Linguistic stimuli

The initial WORD SETS were generated randomly from a finite set of syllables. A 

syllable consists of a consonant from the set {d,  f,  k,  m, p, z} concatenated with a vowel 

from the set {a, i,  o,  u} for a total of 24 possible syllables. The consonant set was chosen 

because it covers  a range of places and manners  of articulation,  as well as  both voiced and 

unvoiced consonants, and the letters are clear and unambiguous for a native English 

speaker. The vowel set, pronounced [ɑː],  [iː],  [əʊ], [uː] respectively,  was  chosen because it 

represents  a distinct set of sounds in the vowel space. Strings were generated by simply 

concatenating between 2 and 4 syllables at random (language_generator.py; Appendix F).

In previous work (Carr,  2012),  I used a speech synthesizer to vocalize the strings  during 

the training phase. There are at least four advantages  to this approach. Firstly, the 

combination of the written and spoken modalities  provides increased stimulation for 

participants. Secondly,  if the participant is momentarily distracted or looks away from the 

screen, they will at least hear the word. Thirdly, the use of vocalizations provides 

participants  with a systematic phonological system,  so they do not need to consider how to 

pronounce or sub-vocalize a word. Fourthly, all participants  hear the words pronounced 

under the same systematic phonological system,  reducing the chance that two participants 

might analyse a word differently because they happened to pronounce or sub-vocalize it 

differently. To produce a synthesized vocalization,  we convert the string into a sequence of 
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Figure 2.4 Two examples of the triangle stimuli in the STABLE SET. Lines thickened for clarity.



machine-readable phonemes and use the MacinTalk speech synthesizer (Apple Computer, 

2006)  to output an MPEG4 audio file containing the rendered word. For example,  the 

word pokifu  would be transformed into machine readable pOWk1IYfUW and then rendered in 

audio as [pəʊ%kiːfuː]. Vocalizations were automatically generated using a Python script 

(vocalize.py; Appendix F)9.

2.1.6. Experiment 2 modification

The experiment described above does not enforce expressivity, and it is likely that the 

languages will rapidly become underspecified (see Kirby et al.,  2008). This  is  not a problem 

for observing the emergence of categorical structure, since even a handful of words can 

carve up the meaning space in a systematic way. However,  to test whether we would see the 

emergence of compositional structure,  the procedure was  modified in experiment 2 so that 

participants  could not use the same string more than three times10  to label items in their 

DYNAMIC SET. Upon attempting to enter a string that had already been used three times, 

the participant was presented with the message ‘Ooops! You’ve used this  word too often. 

Please use another word’. The participant was free to use the same string as often as  they 

wanted to describe triangles  in the STABLE SET11. Experiment 2 is identical to experiment 1 

in all other regards. This procedure was inspired by a similar method used in Verhoef 

(2012)  in which participants were forced to use distinct songs  to prevent underspecification. 

The enforcement of expressivity parallels  the original iterated learning experiments of 

Kirby et al. (2008).

2.2. Data analysis

This  section describes the two measures used to analyse the data: a measure of learnability 
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9  Before a participant began the experiment,  these audio files were manually checked in case of error, 
inconsistency, or disfluency in the rendering. Occasionally, modifications would be made to the 
transformation rules in the Python script to account for unusual combinations of vowels  or consonant clusters 
that emerged, which would then be pronounced in a single consistent way through to the end of  the chain.
10  This  parameter, which we refer to as λ (for limit), was set based on results from  experiment 1, which 
suggested that λ = 3 would be flexible enough to allow for compositional languages but limiting enough to 
prevent runaway underspecification. If λ is  set too high, the participant will rarely be asked to use a different 
word resulting in underspecification to a holistic system. Conversely,  a low λ  restricts the type of language that 
can evolve to one that uses  a large number of distinct words,  which may not be conducive to a natural way of 
structuring the meaning space nor to the emergence of compositional structure. A low λ also forces 
participants to frequently change the words they want to use, which may be unfair.
11 This is  because the STABLE SET is not passed on to the next generation, so duplicates  in this set will not lead 
to runaway underspecification. By opening up the STABLE SET to unlimited duplication,  the participant is 
only constrained by the λ parameter where it really matters for preventing underspecification.



and a measure of  structure.

2.2.1. Measuring learnability

Transmission error is used as  a proxy for learnability under the assumption that greater 

error in predicting the words that the previous participant applied to items in the STABLE 

SET implies the presence of a less learnable language (and vice versa). Transmission error is 

quantified by taking the mean normalized Levenshtein edit distance12  (Levenshtein, 1966) 

between the strings used to describe items  in the STABLE SET at generation i and the 

corresponding strings at generation i−1. More formally, transmission error E for 

generation i is given by

-(Q) =
�
|5|

∑

U∈5

4,([UQ , [
U
Q−�)
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U
Q−�))

,  (2.1)

where the Levenshtein edit distance (LD) between string s for meaning m at generation i 

and the corresponding string in the preceding generation is  normalized by dividing by the 

length of the longer string. This measure of error is expressed over the interval [0,1],  where 

0 represents  identity and 1 represents a lack of common characters. The mean edit 

distance for all m ∈ M gives the final measure of  error.

2.2.2. Measuring structure

Our languages  are essentially mappings between signals and meanings. To measure 

how structured these mappings are, we simply correlate the dissimilarity between pairs  of 

strings with the dissimilarity between pairs  of triangles for all n(n−1)/2 pairs. Standard 

parametric statistics  are not suitable for this,  since the pairwise distances are not 

independent from each other (see Cornish,  2011,  p. 92–93 for some discussion). To get 

around this problem,  we perform a Mantel test (Mantel, 1967)  which compares  the 

correlation for the veridical string-meaning alignment against a distribution of correlations 

for 50,000 Monte-Carlo permutations of the signal-meaning pairs13. This yields a standard 

score (z-score) quantifying the significance of the veridical correlation. The normalized 

Levenshtein distance was used to measure the dissimilarity between pairs of strings. The 
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12 The minimum number of  deletions, insertions, and substitutions required to transform one string into another.
13 As the number of simulations is increased, the scores approach their true value for all 48! permutations of 
the signal-meaning pairs.  50,000 simulations is therefore a tradeoff,  being accurate to approximately 1 or 2 
decimal places, but taking around 20 hours to compute for all metrics for all 80 participants.



following section describes the the more complex problem of measuring the dissimilarity 

between pairs of  triangles.

2.2.3. Triangle dissimilarity metric

The distance between two triangles  is  defined as  the sum of the Euclidean distances 

between corresponding vertices. The orienting spot on one triangle automatically 

corresponds to the orienting spot on the other (i.e. vertex A1 corresponds to vertex B1). To 

determine whether A2 should correspond to B2 or B3,  and consequently whether A3 should 

correspond to B2 or B3, we take the correspondence that yields the smaller sum of 

Euclidean distances. Thus, the distance function between two triangles A and B,  referred to 

as dT, is given by

L<(),*) = L-()�,*�) +UQV[L-()�,*�) + L-()�,*�), L-()�,*�) + L-()�,*�)] ,  (2.2)

where dE(Ai , Bj) is the Euclidean distance between points Ai and Bj , which itself is given by √
(`)Q − `*R)

� + ( a)Q − a*R)
� . For all triangles A, B,  and C in a metric space X,  dT satisfies 

the four conditions on a distance metric: non-negativity, i.e. dT(A, B) ≥ 0; the coincidence 

axiom, i.e. dT(A, B) = 0 iff A = B;  symmetry,  i.e. dT(A, B) = dT(B, A); and the triangle 

inequality, i.e. dT(A, B) ≤ dT(A, C) + dT(C, B).
While our triangle distance function dT provides  a first approximation of the distance 

between two triangles, it is deficient in a number of ways. For example, it does  not consider 

how location, orientation, and size (nor combinations of these properties)  affect the 

perceived similarity between two triangles. One simple way to circumvent this problem is  to 

measure dT between triangle A and a transformation of triangle B that brings it into closer 

alignment with A. This allows  us to eliminate the effect of one or more transformations at a 

time and observe how it affects  dT. The transformations that we consider here are 

translation, rotation, scaling, and all combinations of these three. This  gives us eight 

distance metrics, as  listed in Table 2.1,  each of which considers  and ignores different 

geometrical properties14. The metrics are said to measure dT ‘up to’  (i.e. disregarding) the 

transformations used to bring the triangles into alignment.

Methods 16

14  Since we have eight distance metrics, we compute eight separate structure scores, each score reflecting 
different combinations of geometrical properties.  This  is necessary because we have no way of determining a-
priori the kinds  of properties that are likely to be salient, nor how the salience of properties  will be weighted. 
The lack of a single structure score could be seen as a disadvantage;  however, this approach actually offers a 
few advantages:  (1) it allows  us  to identify which properties participants  find salient;  (2) it helps us to detect 
lineage specificity; and (3) it makes fewer assumptions about what a structured language should look like.



Table 2.1 List of triangle distance metrics and the geometrical properties that they ignore and consider

Distance metric Properties ignored Properties considered

dT — shape, location, orientation, size

dT up to translation location shape, orientation, size

dT up to rotation orientation shape, location, size

dT up to scale size shape, location, orientation

dT up to rigid motion location, orientation shape, size

dT up to scaled translation location, size shape, orientation

dT up to scaled rotation orientation, size shape, location

dT up to scaled rigid motion location, orientation, size shape

dT up to translation (dTt )  is defined as  dT between triangle A and a translation of 

triangle B, denoted B!,  that brings  its  centroid (Bc) into alignment with the centroid of 

triangle A (Ac). Thus, each new vertex Bi! is  given by Bi + (Ac − Bc). dT up to rotation (dTr ) 

is  defined as dT between triangles A and B after they have been rotated to point directly 

upwards. The angle of rotation θ for any triangle A is  the angle of the line passing through 

its centroid and orienting spot, and is given by

Ž()) =

{
IZKKW[ X�+Y�−Z�

�XY QN `)� ≤ `)K

�− IZKKW[ X�+Y�−Z�

�XY QN `)� > `)K  
,  (2.3)

where p = dE(A1, Ac),  q = dE(Ac, (xAc, 0)), and r = dE((xAc, 0), A1). To rotate A into an upright 

orientation,  the triangle is  first translated so that its centroid lies at the origin,  then each 

new x-coordinate is  calculated according to x cos θ − y sin θ, and each new y-coordinate is 

calculated according to x sin θ + y cos θ, before translating the triangle back to its  original 

position. dT up to scale (dTs ) is defined as  dT between a scaling of triangles A and B so that 

both have a perimeter of 750 pixels15. It is  necessary that both triangles are scaled to the 

same arbitrary size, as opposed to scaling one triangle to the size of the other, so that dTs 

meets  the condition of symmetry,  i.e. dTs(A, B)  = dTs(B, A) 16 . To scale triangle A so that its 

perimeter P = 750,  we determine the scaling factor f = 750/P (A),  translate the triangle so 

Methods 17

15 This number was  chosen because it results in scaled triangles that are approximately representative of the 
average perimeter of a triangle in our 480×480-pixel space, which was determined to be ≈751 pixels  based 
on the mean perimeter of 1 million randomly generated triangles. Perimeter was used rather than area 
because scaling very thin, line-like triangles  based on area produces extremely long triangles that dramatically 
skew the correlation with string-edit distance.
16 To see why, imagine that A is a large triangle and B is  a small triangle. Scaling B to the area of A results in 
two large triangles;  scaling A to the area of B results in two small triangles. The Euclidean distances  between 
vertices will not be equal (or even proportional) under these two scalings, resulting in an asymmetrical metric.
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Figure 2.5 (Top) Translation of triangle B so that  its centroid aligns with that of triangle A. (Middle) Rotation of 
triangle A and triangle B around their centroids so that they both point upwards. (Bottom) Scaling of triangle A 
and triangle B around their centroids so that they have equal perimeter. Centroids are marked by black dots.
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that its centroid lies at the origin,  and then multiply each x- and y-coordinate by f,  before 

translating the triangle back to its  original position. The translation,  rotation, and scaling 

transformations are illustrated in Figure 2.5.

We now turn to the composite transformations. dT up to rigid motion (dTrm )  is  simply 

dT between triangle A and a translation and rotation (i.e. a rigid motion) of B following the 

procedures  described above. Likewise, dT up to scaled translation (dTst )  is dT between a 

scaling of A and a translation and scaling of B. dT up to scaled rotation (dTsr )  is  dT 

between a rotation and scaling of A and a rotation and scaling of B. Finally, dT up to 

scaled rigid motion (dTsrm )  is  dT between a scaling and rotation of A and a scaling and 

rigid motion of B. The scaled rigid motion transformation is illustrated in Figure 2.6. The 

code for all geometrical transformations  and measurements  described above can be found 

in geometry.py (Appendix F).

2.3. Statistical methods

The measure of structure discussed in the previous  section has a statistical test of 

significance built in which informs us about how unlikely it is that a given correlation 

between string dissimilarity and meaning dissimilarity could have occurred by chance. 

However, we would also like to test the hypothesis that structure,  as well as learnability, 

increase with generation number. Recent iterated learning experiments  have used Page’s 
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Figure 2.6 Illustration of a scaled rigid motion transformation. Both triangles are rotated to an upright 
orientation and scaled to equal perimeter. Triangle B is  also translated so that its centroid aligns with that of 
triangle A. In this  way, the distance between Aʹ and B ʹ  quantifies the difference in shape only, ignoring location, 
orientation, and size.
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trend test (Page,  1963)  to evaluate the significance of the cultural evolutionary trend (e.g. 

Smith & Wonnacott,  2010;  Verhoef,  2012). The test evaluates  the alternative hypothesis 

that generation 1 < generation 2 < … < generation n against the null hypothesis that 

generation 1 = generation 2 = … = generation n (i.e. a repeated measures and ordered 

counterpart to the Spearman rank correlation coefficient). Page’s L will be the primary 

statistic for evaluating Hypothesis  I (learnability increases)  and Hypothesis II (structure 

increases). A Python implementation of Page’s trend test can be found in page.py, 

(Appendix F).

To evaluate Hypothesis III, we can simply correlate structure scores for generation i 

with learnability scores for generation i+1. The idea here is that,  if a participant produces 

a more structured language, the participant in the following cultural generation should find 

that language easier to learn (and vice versa) 17. This intergenerational approach is more 

powerful than the typical use of a correlation,  since it is  possible to observe the direction of 

causation: a positive correlation, for example,  implies that structure leads to languages  that 

are more learnable in the subsequent generation (because it cannot be the case that more 

learnable languages cause structure to emerge in the previous generation). Of course, the 

normal caveat that correlation does not imply causation still applies.
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17 A solution to the problem of  non-independence of  data points is discussed in Section 3.3.3.



3. Results

This  chapter provides the results  from the experiments. Section 3.1 describes the results for 

experiment 1. Section 3.2 describes the results for experiment 2. Section 3.3 offers  a 

comparison of  the experiments.

3.1. Experiment 1

Forty participants (20 female)  completed experiment 1 during the period 1st—12th July 

2013. The mean age was 23.1 years  (SD = 3.15). Since generation number is  our 

independent variable,  it should not be correlated with factors  incidental to the experiment. 

There was no significant correlation between generation number and the time of the day  

(r = 0.167,  n = 40, p  = 0.303)  nor the day of the week (r = 0.218,  n = 40, p  = 0.177)  that 

the experiment was completed on. Generation number was  also not correlated with sex     

(r = 0.113,  n = 40,  p  = 0.486)  or language experience (r = 0.012, n = 40, p  = 0.94). 

However, it was significantly correlated with age (r = 0.341,  n = 40,  p  = 0.031). The 

average age in the first five generations was  22.1 years,  while the average age in the latter 

five generations was 24.1 years18.

3.1.1. Number of  unique strings

The number of unique strings  in the languages rapidly collapsed down to an average 

of 5 in each of the DYNAMIC and STABLE SETS by generation 10. These results  are shown 

in Figure 3.1. This falling trend is  highly significant both for the DYNAMIC SET (L = 1990, 

m = 4, n = 11, p < 0.001) and the STABLE SET (L = 1993, m = 4, n = 11, p < 0.001).

3.1.2. Learnability

The results for transmission error are shown in Figure 3.2.A,  which shows that error 

tends to fall as subsequent participants  are increasingly able to predict the words that the 

previous participant applied to items in the STABLE SET. This  falling trend is highly 

significant (L = 1514, m = 4, n = 10,  p  < 0.001). However, given that the number of 

21

18 We did not investigate this factor further, since it seemed unlikely that a difference of two years would have 
any significant impact on the validity of  the experiment.



unique strings in the languages  tends to decrease with generation number,  it is  unsurprising 

that transmission error also decreases,  since chance guesses are increasingly more likely to 

be correct. To account for this, we computed a distribution of transmission error scores for 

100,000 Monte-Carlo permutations  of each participant’s  STABLE SET and calculated a z-

score for the veridical score as  compared to the Monte-Carlo sample. This  transformation 

quantifies how unlikely it is that a given error score could have been generated by chance 

(or in other words the non-randomness  of the alignment between consecutive STABLE SETS) 

and is  therefore a better estimate of learnability19. The results  from this transformation are 

shown in Figure 3.2.B. This graph suggests  that learnability tends to increase over the ten 

generations. One data point (D10)  is undefined under this  transformation because the 
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19  This procedure is novel to the present project and should be applied in future research of this kind, 
especially where there is a dramatic collapse in the number of  words.

Figure 3.1 The number of unique strings over the course of 10 generations in chains A–D for the dynamic set 
(left) and stable set (right). The number of unique strings rapidly decreases from 48 down to an average of 5.

■ Chain A    ■ Chain B    ■ Chain C    ■ Chain D

DYNAMIC SET STABLE SET

Figure 3.2 (A) Transmission error over the course of 10 generations for chains A—D. (B) Z-score 
transformation of the error scores by comparing the veridical score to a distribution of error scores for Monte-
Carlo permutations of the STABLE WORD SET. The data point for D10 is undefined, since all triangles were 
referred to by a single word at this generation. The dashed line in (B) show the two-tailed 95% confidence level.

■ Chain A    ■ Chain B    ■ Chain C    ■ Chain D
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participant used a single word to refer to all triangles. Since Page’s  trend test cannot handle 

missing data points, the test was run over the first nine generations only and was highly 

significant for a rising trend (L = 1038, m = 4, n = 9, p < 0.001). The importance of this z-

score transformation is made particularly clear by chain D. The results for transmission 

error suggest that participants in this chain made the least amount of error, but,  on 

consulting the z-score graph, it is clear that these levels of error could easily have been 

generated by chance.

Besides looking at transmission error,  there are some other ways we can show that the 

languages are becoming easier to learn. Firstly,  we can look at the amount of error 

participants  made during mini tests. This decreased significantly from an average of 29.3% 

error in generation 1 to 6.5% error in generation 10 (L = 1442.5, m = 4, n = 10, p < 0.001). 

Secondly, we can look at how quickly participants responded to the test items,  with quicker 

response times  indicating a more accessible language. The time spent on each test item 

decreased significantly over the course of the experiment from 8.23 seconds in generation 1 

to 3.42 seconds  in generation 10 (L = 1425, m = 4, n = 10, p < 0.001). Finally, participants 

were asked in the post-test questionnaire to rate how difficult it was ‘to learn and recall the 

words’. Participants’ ratings decreased significantly over the ten generations  from an 

average of  9.5 in generation 1 to 5.75 in generation 10 (L = 1381, m = 4, n = 10, p < 0.001) 20.

3.1.3. Structure

The measure of structure for each of the eight triangle distance metrics  is  given in 

Figure 3.3. In chain D, which collapsed to a small number of words,  this  approach 

performs poorly and the scores are therefore only provided up to generation 6, after which 

the number of unique strings in the STABLE SET drops  to 2. The Bonferroni correction has 

been applied to adjust for the fact that eight separate metrics have been used to quantify 

the structure in the languages,  yielding a two-tailed 95% confidence level for significantly 

structured languages of z = 2.734. Table 3.1 gives the mean and standard deviation of the 

z-scores for each metric.
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20 Of course, these three measures are also subject to the same criticism we levelled at our transmission error 
measure: it is unsurprising that they decrease given the collapse in the number of  unique strings.
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Figure 3.3  Plots  showing the structure in the languages under the eight triangle distance metrics. Note that 
the scores for participants D7 through D10 are undefined here,  since these participants used a very small 
number of words to describe the triangles, making this approach to measuring structure unsuitable. The 
dotted lines show the z-scores equivalent to α = 0.05 and the dashed lines show the z-scores equivalent to α 
= 0.00625 which corrects for eight multiple comparisons using the Bonferroni correction. Scores that lie 
outside of the dashed lines are significantly unlikely to have occurred by chance alone.
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Table 3.1 Mean and standard deviation of the structure z-scores for each distance metric

Distance metric Mean SD

dT 0.61 1.514

dT up to translation 0.86 1.753

dT up to rotation 1.403 1.662

dT up to scale 0.169 1.659

dT up to rigid motion 2.532 3.231

dT up to scaled translation 0.137 1.571

dT up to scaled rotation 1.123 1.546

dT up to scaled rigid motion 2.461 3.119

These results suggest that the type of structure that is emerging in the languages is 

primarily concerned with size and shape, since the dTrm and dTsrm metrics  give by far the 

highest scores21. Furthermore, there is  a highly significant upward trend for scores based on 

dTrm (L = 1461,  m = 3, n = 11, p < 0.001)  and dTsrm (L = 1470, m = 3, n = 11, p  < 0.001)22. 

Given these results,  we focus primarily on size and shape in the following analyses,  but note 

that the languages may be structured in other ways that our metrics fail to quantify.

Any triangle with perimeter P has area ≤ 8 �/(��√�)with equality iff the triangle is 

equilateral. We use this fact to approximate the shape property, since deviations  from the 

maximum area for a given perimeter correspond to less equilateral triangles23. To visualize 

the relationship between size and shape, we produced scatterplots showing perimeter 

against area for the participant in each chain who had the strongest dTrm-based structure 

score (see Figure 3.4). Each point is colour-coded according to the word used to describe 

that triangle, allowing us  to judge how the words  correspond to the underlying shape-size 

conceptual space.

Participant B8 produced 7 unique strings,  but two of these,  mamofudu and mamoziki, 

appear to be typos on mamofudo and mamozuki respectively (this is  especially clear when 

you look at where these two words  lie in the space). With this is mind,  there appear to be 

five words in the language at this generation. Figure 3.5 shows  the triangles that these five 

words  describe,  along with a prototypical form of each triangle produced by averaging 
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21 This bias is supported by the literature (e.g. Landau, Smith, & Jones, 1988).
22  Chain D has been excluded in these runs of Page’s trend test,  since several of the data points are 
undefined. The tests remain significant even if the randomly generated generation-0 data points  are 
excluded: L = 1100, m = 3, n = 10, p < 0.001 (for both dTrm and dTsrm).
23  Of course,  this does not fully capture the concept of shape, but it is  convenient for visualizing the 
relationship between size and shape in two-dimensional plots.



them together24. These graphics give us a sense of the central tendency (the prototype)  and 

the variance (the triangles  themselves)  within a set of triangles described by a single word. 

Pika is used to describe small or thin triangles. Mamofudo is  used for very large triangles. 

The distinction between the intermediate triangles  is  less clear, but one interpretation could 

be that mamozuki is used for right-angled triangles, mamo is  used for isosceles  triangles, and 

fudo is reserved for the most equilateral triangles.

The language in chain A at generation 9 divides the shape-size space a little differently. 

The words  kazizui and kazizizu are used for small and particularly thin triangles. Large 

triangles  are referred to by the word fod. Medium-sized triangles are referred to by two sets 
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24 All triangles were translated to the centre of the space and then rotated upright with either the orienting 
spot or the vertex with the smallest angle on top;  vertices 2 and 3 were then relabelled, if necessary, to ensure 
that the second vertex was  always to the left of the first;  finally, the coordinates were averaged together. This 
method is not foolproof, but it gives a rough idea of  the prototypical form of  a given set of  triangles.

Figure 3.4  Scatterplots showing perimeter against area for all triangles in the STABLE SET for four participants. 
Each point  corresponds to one triangle and is coloured according to the word used to describe it. The space 
inside the plots  roughly corresponds to shape vs. size. Black curves show the relationship  between area and 
perimeter for perfectly equilateral triangles. As you move along the curve, the triangles go from small to large; 
as you move away from the curve, the triangles become skinnier. Ellipses show interpretations of how the 
space may be carved up.

B8A9

D5C8
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Figure  3.5 The five categories of  triangle that 
emerged in chain B by generation 8. The triangles in 
the background are those that were assigned a given 
name,  while the filled triangles in the foreground are 
prototypes of those triangles which were produced by 
averaging the triangles together. Colours correspond 
to those used in the shape-size plot in Fig. 3.4.

pika mamofudo

mamomamozuki

fudo



of words,  with muaki denoting the more equilateral triangles  and fama /pama denoting 

those with less  even sides. The distinction between fama and pama is unclear and may in 

fact be non-existent; the participant noted: ‘fama and pama seemed to be related in some 

way … but couldn’t quite figure out how’. The previous participant, A8, claimed that pama 

and fama were used for ‘non-equilateral triangles’,  but the distinction between the words 

remains unclear for most of their lineage. If we consider, pama and fama to be variants on 

the same category, then we have four categories in this language.

As in chains A and B, the language in chain C (at generation 8)  divides the triangles up 

into small,  medium, and large. Small and thin triangles are referred to as kik,  medium-sized 
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Figure 3.6 The four main categories that emerged in chain A  by generation 9. The triangles in the background 
are those that were assigned a given name, while the filled triangles in the foreground are prototypes of those 
triangles which were produced by averaging the triangles together. Colours correspond to those in Fig. 3.4.

kazizui / kazizizu muaki

pama / famafod



triangles  are called dazari, and large triangles  are fumo. There are two exceptions to the 

dazari category: mappakiki and mappafiki both of which appear to cover medium-sized but 

relatively pointy triangles25. Again, the distinction between the mappa- forms  is  unclear and 

if we consider them part of the same category,  then there are also a total of four categories 

in this language. As mentioned previously, Chain D resisted the emergence of categorical 

structure, as can be seen from the plot in Figure 3.4; as early as generation 5,  a single word 

was being used for the vast majority of  triangles.
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25 Note that dazarai and mappfiki are most likely typos on dazari and mappafiki.

Figure 3.7 The four main categories that emerged in chain C by generation 8. The triangles in the background 
are those that were assigned a given name, while the filled triangles in the foreground are prototypes of those 
triangles which were produced by averaging the triangles together. Colours correspond to those in Fig. 3.4.

fumo kik

dazarimappafiki / mappakiki



3.2. Experiment 2

Forty participants  (25 female)  completed experiment 2 during the period 8th—19th July 

2013. The mean age was  23.4 years (SD = 5.02). There was no significant correlation 

between generation number and the time of the day at which the experiment was 

completed (r = −0.038, n = 40,  p = 0.815). Generation number was  also not significantly 

correlated with age (r = 0.25,  n = 39, p = 0.124;  one anomaly removed), sex (r = 0.027,     

n = 40, p  = 0.869), or language experience (r = −0.191,  n = 40,  p  = 0.238). However,  it 

was  significantly correlated with the day of the week on which the experiment was 

completed (r = 0.444, n = 40, p = 0.004).

3.2.1. Number of  unique strings

Unlike experiment 1, the number of unique strings  is not able to collapse. In fact, the 

number of words  in the DYNAMIC SET never falls below 22 (16 is the minimum for λ  = 3), 

and by generation 10,  there are an average of 28 words in each of the languages. In 

addition, the number of unique strings  in the STABLE SET also remains  high,  despite there 

being no limit on the number of times a word could be repeated within this  set. These 

results are illustrated in Figure 3.8. However,  although the number of unique strings  does 

not collapse as  dramatically as  in experiment 1,  there is  still a significant downward trend, 

in both the DYNAMIC SET (L = 1912.5,  m = 4,  n = 11,  p < 0.001)  and the STABLE SET       

(L = 1908, m = 4, n = 11, p < 0.001).

3.2.2. Learnability

The results for transmission error are illustrated in Figure 3.9.A. The graph suggests 
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Figure 3.8 Number of unique strings over the 10 generations in chains E–H for the DYNAMIC SET and STABLE 
SET. Unlike experiment 1, the languages do not  collapse to a small set of words. The dashed line shows the 
minimum number of unique strings (16) that could be used in the dynamic set due to the λ constraint.

■ Chain E    ■ Chain F    ■ Chain G    ■ Chain H

DYNAMIC SET STABLE SET



that error in experiment 2 remained relatively static over the 10 generations. Nevertheless, 

the results  do show a significantly decreasing trend (L = 1415, m = 4, n = 10,  p  < 0.001). 

To account for the possibility that transmission error may be decreasing simply because 

chance guesses are increasingly more likely to be correct,  the transmission error scores were 

subject to the same transformation as  described in Section 3.1.2 and are shown in Figure 

3.9.B. These results suggest that, in many cases, participants are performing no better than 

chance, although there are a small number of participants  whose error scores  are 

significantly non-random. Nevertheless,  there is  a significant upward trend (L = 1351,  m = 4, 

n = 10, p = 0.005).

The amount of error in the mini tests decreased significantly over the course of the 

experiment (L = 1312, m = 4,  n = 10,  p  = 0.032),  falling from an average of 35.9% error 

in generation 1 to an average of 19.1% error in generation 10. There was  no significant 

decrease in the time spent on each test item (L = 1202, m = 4, n = 10, p = n.s.)  nor 

participants’ difficulty ratings (L = 1266, m = 4, n = 10, p = 0.154).

3.2.3. Structure

The structure results  for all eight triangle distance metrics  are given in Figure 3.10. As 

in experiment 1, the Bonferroni correction has  been applied to adjust for the fact that eight 

separate metrics have been used to quantify the structure in the languages, raising the 

confidence level to z = 2.734. Table 3.2 gives the mean and standard deviation of the z-

scores for each metric.
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Figure 3.9 (A) Transmission error over the course of 10 generations for chains E—H. (B) Z-score 
transformation of the error scores by comparing the veridical score to a distribution of error scores for Monte-
Carlo permutations of the stable word set. The dashed line in (B) show the two-tailed 95% confidence level.

■ Chain E    ■ Chain F    ■ Chain G    ■ Chain H

BA
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Figure 3.10 Plots showing the structure in the languages under the eight triangle distance metrics. The dotted 
lines show the z-scores equivalent to α = 0.05 and the dashed lines show the z-scores equivalent  to α = 
0.00625 which corrects for eight multiple comparisons using the Bonferroni correction. Scores that lie outside 
of the dashed lines are significantly unlikely to have occurred by chance alone.

■ Chain E    ■ Chain F    ■ Chain G    ■ Chain H

dT

dT up to rotation

dT up to rigid motion

dT up to translation

dT up to scale

dT up to scaled translation

dT up to scaled rotation dT up to scaled rigid motion



Table 3.2 Mean and standard deviation of the structure z-scores for each distance metric

Distance metric Mean SD

dT 0.561 1.374

dT up to translation 0.286 1.361

dT up to rotation 1.171 1.407

dT up to scale 0.419 1.465

dT up to rigid motion 1.41 2.284

dT up to scaled translation −0.034 1.174

dT up to scaled rotation 1.025 1.34

dT up to scaled rigid motion 1.231 1.915

Again,  the structure scores  that stand out are those for dTrm and dTsrm. Furthermore, 

there is  a significant upward trend for both dTrm-based scores (L = 1780, m = 4,  n = 11,       

p  = 0.002)  and dTsrm-based scores (L = 1758,  m = 4,  n = 11,  p = 0.006)26. These results 

reiterate the idea that the experiments  are being driven by a strong bias for shape and size. 

To investigate these properties  more closely,  we produced shape-size scatterplots for the 

most structured generation in each chain (according to the dTrm results). However, since 

each word in the STABLE SET is  used just 1.8 times on average, it becomes  difficult to 

visualize any emergent categorical structure. To help us  visualize the structure, we used 

agglomerative hierarchical clustering27 to cluster the strings  in the STABLE SET. Determining 

the number of clusters c in a dataset is a classic computational problem (Duda, Heart,  & 

Stork,  2001, p. 557). Rather than select some algorithm to determine the number of 

clusters, we set c to 5, since the shape-size space in experiment 1 was typically divided into 

around four or five categories. The plots are shown in Figure 3.11.

The way in which the spaces are carved up is similar to how they were divided in 

experiment 1. Typically, there appear to be three main categories  – small,  medium, and 

large – although the boundaries appear to be less  well defined. Since G7 had a structure 

score on par with those in experiment 1,  we took a look at this  language in particular. The 

triangles  represented by the five clusterings  are shown in Figure 3.12. Kik covers the small 

triangles  and cluster 2 (do- forms)  covers the large triangles. Medium-sized triangles are 

referred to by cluster 3 (-no forms)  and cluster 4 (-zu forms). Cluster 5 (-iki forms)  tends to be 

very pointy.
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26  After excluding generation-0 data points, dTrm remains  significant (L = 1303, m = 4,  n  = 10, p  = 0.045), 
while dTsrm becomes non-significant (L = 1298, m = 4, n = 10, p = 0.055).
27 Distance metric: normalized Levenshtein distance; linkage criterion: mean.



The purpose of experiment 2,  however, was to allow for the emergence of 

compositionality,  but by clustering the words  into small groups, we necessarily lose any 

compositional structure that might have been present. With this in mind, we took a closer 

look at one particular cluster of words in G7. Within cluster 5 (-iki forms),  there are four 

distinct groups  beginning de-, ma- or mi-,  ra-, and za-. Figure 3.13 shows  the triangles 

within each of these four subgroups. When we separate out the triangles  in this  way, new 

structure emerges. The de- and ra- groups are clearly wider,  while the m- and za- groups are 
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Figure 3.11  Scatterplots  showing perimeter against area for the 48 triangles in the STABLE SET for four 
participants. Points represent triangles and are colour-coded according to the cluster of similar strings that the 
word used to describe that triangle belongs to. The space inside the plots roughly corresponds to shape vs. 
size. Black curves show the relationship  between area and perimeter for perfectly equilateral triangles.  As you 
move along the curve, the triangles go from small to large; as you move away from the curve, the triangles 
become skinnier. Ellipses show interpretations of how the space may be carved up. E8 cluster 1 =  {zuma, 
zupa},  cluster 2 = {duh, dupa, dus}, cluster 3 = {fuk, fuki}, cluster 4 =  {datiki, fahliki, falihki, fatiki, fokiki, folihki, 
fotiki,  kiki,  liki, mahiki, pofiki,  pokiki, polihki, poliki, pontiki, potiki, taliki,  tiki, tokiki, zokiki, zukiki}, cluster 5 = 
{fokaki,  folaki, mofiki, mohaki, mohalifi, momahiki, momaki, momiki,  pohaki}.  F5 cluster 2 = {modazi, mudazi}, 
cluster 3 =  {duzaki, mukaka, mukaki, mukazu, muzaka, zakaka, zkaka, zukaka}, cluster 4 = {kimiku, kizu, 
maziki,  mizaku, miziki, miziku, mizu, mizumi, mozimu, zimu}, cluster 5 = {duma, kima, zakami, zikiki, zikimo, 
zikumo,  zimomo, zukimi, zuma}.  G7 cluster 2 = {dod, domo, domod}, cluster 3 = {mino, reno}, cluster 4 = 
{kikioluazu,  kikoluazu, moazu, padzu, panzu}, cluster 5 =  {demiki,  demikiki, kiki, mafiki, maziki,  miki, mikiki, 
rafiki, raifiki, raifkiki, zafiki,  zaifiki}. H7 cluster 2 = {akiki,  kiki},  cluster 3 =  {akuzo, azizo, azuzo, mazuzo, 
muzuzo,  zizu, zuzi},  cluster 4 = {atzuki, azuki, matatiki, matziki,  matzuki, matzuma, matzuzi, maziki, mazuzi}, 
cluster 5 = {akuma, azima, fima, puma, putafima}.

E8 F5

G7 H7



Results 35

Figure 3.12  The triangles represented by each of the 
five clusterings of strings in G7. The triangles in the 
background are those that were assigned a name 
from the cluster, while the filled triangles in the 
foreground are prototypes of those triangles. Colours 
correspond to those used in the shape-size plot in 
Fig.  3.11. Cluster 4 = {kikioluazu, kikoluazu,  moazu, 
padzu,  panzu}. Cluster 5 = {demiki, demikiki, kiki, 
mafiki,  maziki, miki, mikiki, rafiki, raifiki, raifkiki, zafiki, 
zaifiki}.

1: kik 2: dod / domo / domod

4: -azu / -luazu / -zu3: mino / reno

5: -fiki / -iki / -kiki



thinner. Interestingly,  there appears to be some rotational structure. The m- group has a 

mean angle of rotation of 72.6°, while the za- group has  a mean angle of rotation of 

114.4°. To confirm that this was not simply chance, we looked at the same groups of words 

in the participant’s DYNAMIC SET which had mean angles  of rotation of 52.8° and 121.6° 

respectively. Taking the data from the STABLE and DYNAMIC SETS combined, the mean 

angles  of rotation were 61.4° (95% CI: 44.3°—78.7°) for the m- group and 117.3° (95% 

CI: 103.3°—131.5°) for the za- group. The difference between the groups is significant       

(t = 4.524, df = 26, p  < 0.001), suggesting that they do indeed mark out a distinction in 
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Figure 3.13  Cluster 5 in G7 subdivided into four groups according to first  syllable. Within this  cluster, we see 
signs of substructure. de- and ra- words correspond to wider triangles, and m- and za- words correspond to 
thiner triangles. The m- words tend to point NE–SW, while the za- words tend to point NW–SE. Blue arrows 
show the mean angles of rotation (excluding the anomaly in each set marked with an *).

demiki, demikiki mafiki, maziki,
miki, mikiki

rafiki, raifiki, raifkiki *0°

90°

zafiki, zaifiki

0°

90°

*



rotation28. However,  we cannot conclude from this that the ma-/mi- and za- syllables  are 

morphemes,  since there is  no evidence of them being used productively elsewhere in the 

language. The syllable mi- does  occur in the word mino in cluster 3, but there was no 

evidence that mino s were angled the way you would expect if  mi- were productive.

3.3. Comparison of  experiments 1 and 2

In this section, we briefly compare the outcomes of  the two experiments.

3.3.1. Learnability

Figure 3.14 plots the mean learnability scores  for both experiments. In the first five 

generations, the plots reveal a similar trend. It is only after generation 5 that we see the two 

experiments  diverge on separate trajectories. This point of divergence corresponds  closely 

with the collapse in the number of unique strings we observed at around generation 5 in 

experiment 1, suggesting some interaction here.

3.3.2. Structure

Figure 3.15 plots  the mean dTrm-based structure scores for both experiments29. As with 

the learnability results,  the two experiments  follow similar trajectories up until around 

generation 5, at which point the two experiments  diverge with experiment 1 giving rise to 

more structured languages that are highly non-random. These results  were supported by a 

qualitative analysis of the languages, which showed that systematic category structure 
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28  Independent samples t-test;  includes the two anomalies pointed out in Fig. 3.13. Also significant if you 
consider the STABLE SET (t = 2.236, df = 12, p = 0.045) or DYNAMIC SET (t = 4.097, df = 12, p = 0.001) alone.
29  As  with the analyses above, we focus only on dTrm here, since this  metric appears to best capture the 
structure in the languages.

Figure 3.14 Mean learnability scores for experiment 1 and experiment 2. Error bars show the 95% confidence 
intervals on the mean and the dashed lines show the 95% confidence level.

Experiment 2Experiment 1



emerged in experiment 1 and,  to a certain extent,  in experiment 2. However,  there was no 

evidence that the procedural modification in experiment 2 promoted the evolution of 

compositional linguistic structure.

3.3.3. Intergenerational correlation between structure and learnability

Hypothesis  III was  that we could show a link between structure and learnability. The 

correlation between the learnability scores of generation i and the dTrm-based structure 

scores  for the DYNAMIC SET30 of generation i−1 was significant for experiment 1 (r = 0.786, 

n = 36,  p  < 0.001) and experiment 2 (r = 0.37,  n = 40, p  = 0.019). Nevertheless, it is 

unsurprising that these variables  are correlated given that we have already shown 

empirically that structure and learnability increase over the course of the experiments. We 

therefore ran a partial correlation between these variables controlling for generation 

number31. This test was significant for experiment 1 (r = 0.479,  n = 36, p  = 0.002)  and 

experiment 2 (r = 0.307, n = 40,  p  = 0.0498), suggesting that structure is,  at least in part, 

driving the increase in learnability.

The code used to produce the results  presented in this chapter can be found in 

analysis.py (Appendix F). In the following chapter, we discuss  how the results from these 

experiments relate to the original research questions and hypotheses.
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30  We use the DYNAMIC SET here, since we want to correlate a participant’s  learnability score with the 
structure score of the training material that participant received, not the general structure score of the 
previous participant.
31  This approach was adopted from Seyfarth (2010, p. 22). It can be thought of in the following way: if 
generation number were to have no effect on structure and learnability, would there still be a correlation 
between participants’ learnability scores and the structure scores  of their training materials? This  is  one 
simple way of  controlling for the non-independence of  the scores.

Figure 3.15 Mean dTrm-based structure scores for experiment 1 and experiment 2.  Error bars show the 95% 
confidence intervals on the mean and the dashed lines show the 95% confidence level for significantly 
structured languages (Bonferroni corrected for 8 multiple comparisons).

Experiment 2Experiment 1



4. Discussion

In this  final chapter,  we discuss how the empirical results relate to the research questions. 

Section 4.1 summarizes  the general findings. Section 4.2 considers alternative mechanisms 

to explain the increase in learnability. Section 4.3 discusses the contributions this project 

has made. Section 4.4 offers  some criticisms. Section 4.5 concludes with some thoughts on 

future research directions.

4.1. General findings

Table 4.1 summarizes the results  in terms of the hypotheses. Hypothesis  I was supported in 

both experiments: the languages  evolved to become more learnable. Hypothesis  II was also 

supported: the emergence of categorical structure allows participants  to accurately predict 

how the triangles in the STABLE SET had previously been labelled by exploiting the 

regularity in the mapping between linguistic form and arbitrarily-defined regions of the 

meaning space. Finally,  Hypothesis III was supported suggesting that the emergence of 

structure is driving increases in learnability.

Table 4.1 Summary of the outcomes of experiments 1 and 2

Hypothesis Test statistic Experiment 1 Experiment 2

I: Learnability increases with generation number Page’s trend test p < 0.001 p = 0.005

II: Structure increases with generation number Page’s trend test p < 0.001 p = 0.002

III: Increased structure explains increased learnability Partial correlation p = 0.002 p = 0.0498

It is  worth thinking about the mechanism underlying these experiments. Firstly,  the 

number of words in the languages  decreases due to the bottleneck on transmission. 

Participants  cannot memorize as  many as  48 words within their 15- to 20-minute training 

phase, let alone the mappings between words and meanings. Consequently, at every 

iteration the number of words drops,  eventually stabilizing on a small, memorable set. 

Secondly, as  the number of words in the languages decreases,  correspondences between 

form and meaning arise by chance. Since participants  expect to find regularity in the 
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languages32,  they infer rules to explain such chance correspondences. This  leads  to 

emergent global structure as  each subsequent participant imposes additional local 

structure. Thirdly, as structure increases, the languages  become more learnable because 

participants  can generalize from the rules they have inferred to correctly identify items  they 

never saw during training.

In experiment 2,  we impede this three-step mechanism by preventing the variation in 

the languages from collapsing. We predicted that the languages  would find another way to 

circumvent the bottleneck,  perhaps by evolving compositionality as previously observed by 

Kirby et al. (2008). However,  this was  not supported by our results. There are at least two 

possible explanations  for this. Firstly, it is possible that the languages  in experiment 2 were 

not given sufficient time to evolve a compositional system. This could be tested by 

extending the chains. Secondly, it is possible that the artificial constraint does not really 

enforce expressivity in the same way that the functional use of language enforces 

expressivity. This  could be tested by implementing a dyadic version of the experiment in 

which participants negotiate an optimal system in a communication task.

This  is something that we considered during initial discussions  but ruled out for two 

reasons. Firstly,  since this  was the first time an infinite meaning space had been 

implemented in an iterated learning experiment, we preferred to keep the experiment as 

simple as  possible. Secondly, the use of dyads scuppers  what is arguably the most important 

aspect of iterated learning: the fact that no participant is  consciously trying to design an 

optimal system. Each participant in a monadic diffusion chain is  tasked with learning and 

recalling the language presented to them. We even tell them that a prize will be awarded 

for the participant best able to recall the language. Despite this,  the outcome we have 

consistently observed is  systematic structure that is  emergent from the process of iterated 

learning itself  and therefore akin to Keller’s (1994) ‘invisible hand’.

4.2. Alternative mechanisms for increased learnability

The emergence of categorical or compositional structure is  not the only way in which 

transmission fidelity could be improved. Here we investigate two alternative sources of 

increased learnability: combinatorial structure and sound symbolism.
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32  For example, on completing the experiment, one participant (F5) claimed that the language she was 
learning was wrong and contained errors and inconsistencies.



4.2.1. Combinatorial structure

One possible explanation is  that predictable combinatorial structure evolved during 

transmission. The information theoretic measure of Shannon entropy (Shannon,  1948)  can 

be used to estimate the predictability of a language. To calculate this,  we determine the 

probability of occurrence p  for each syllable s in the set of syllables  in a participant’s 

training material S, and compute the entropy H according to

0(;) = −
∑

[∈;

X([) · TWO� X([). (4.1)

The results  are given in Figure 4.1. There is  a significant downward trend in experiment 1 

(L = 1140,  m = 3, n = 10,  p  < 0.001)  and experiment 2 (L = 1408, m = 4,  n = 10,              

p  < 0.001). The partial correlation between participants’ learnability scores  and the 

entropy of their training materials  (controlling for generation number) was significant for 

experiment 1 (r = −0.388,  n = 30,  p = 0.029), but not for experiment 2 (r = −0.053,          

n = 40,  p  = 0.746). This suggests  that decreasing entropy may explain some of the increase 

in learnability in experiment 1.

Calculating the entropy of a syllable set informs  us about the predictability of the 

system as  a whole, but not whether one unit is predictable in light of another. Therefore, 

we calculated the conditional entropy of participants’ training materials, which measures 

the average predictability of the second syllable y ∈ Y given that the first syllable x ∈ X, for 

all bi-syllables, is known. It is given by,

0(A|@) = −
∑

`∈@

∑

a∈A
X(`, a) · TWO� X(a|`). (4.2)
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Figure 4.1 Mean entropy of participants’ training materials (i.e. the DYNAMIC SET of the previous participant) for 
experiment 1 and experiment 2. Error bars show the 95% confidence interval on the mean.

Experiment 1 Experiment 2



The results  are given in Figure 4.2. There was a significant downward trend in experiment 

1 (L = 1012, m = 3,  n = 10,  p  = 0.014), but not in experiment 2 (L  = 1116,  m = 4, n = 10, 

p  = n.s.). The partial correlation between participants’ learnability scores  and the 

conditional entropy of their training materials  (controlling for generation number) was  not 

significant for experiment 1 (r = 0.277,  n = 30, p  = 0.134)  or experiment 2 (r = 0.212,  n = 40, 

p = 0.187).

4.2.2. Sound symbolism

Sound symbolism refers  to the phenomenon where a unit of sound ‘goes beyond its 

linguistic function as a contrastive,  non-meaning-bearing unit,  to directly express some kind 

of meaning’  (Nuckolls,  1999,  p. 228). The qualitative analysis  suggested that sound 

symbolism might play a role in the languages, which is  particularly relevant here as  it has 

been suggested that sound symbolism facilitates word learning (see e.g. Monaghan, 

Christiansen,  & Fitneva,  2011; Nygaard,  Cook, & Namy, 2009;  Parault & Schwanenflugel, 

2006). The emergence of sound symbolic patterning was explored in the following way: for 

each of the ten phonemes that initialized the experiments,  we measured the mean 

pointedness of triangles  whose associated words contained that phoneme. The pointedness 

of a triangle T was calculated according to  TWOM(XMZQUM\MZ(<)�/(��
√

�))
TWOM(IZMI(<))

, i.e. the ratio of the log of 

the triangle’s  area to the log of the area of an equilateral triangle with the same perimeter. 

The results are given in Figure 4.3. In experiment 1,  the phonemes [iː], [k],  and [z] tend to 

be associated with more pointed triangles,  while the phonemes  [əʊ],  [d], [f],  and [m] tend 
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Figure 4.2 Mean conditional entropy of participants’ training materials (i.e. the DYNAMIC SET of the previous 
participant) for experiment 1 and experiment 2. Error bars show the 95% confidence interval on the mean.

Experiment 1 Experiment 2



to be associated with more equilateral triangles33. Similar findings hold for experiment 2, 

although the effect is weaker. We have not conducted statistical analyses  on these patterns, 

since the nature of the data does not lend itself to such analysis. However, the emergence 

of attested sound symbolic patterns may have made some contribution to increased 

learnability.

4.3. Contributions

These experiments  have shown that categorical structure can emerge in an iterated 

learning experiment with a meaning space that is  infinite in magnitude. We describe our 

meaning space as infinite because it avoids the four characteristics  of fixed, monolithic 

spaces. Firstly, the meaning space is not pre-specified. We had no particular hypothesis 

about which features participants would find salient. For this reason, it was  necessary to 

construct eight separate distance metrics  to cover the most likely possibilities. Secondly,  the 

meaning space is  not discrete. On each dimension, the triangle stimuli vary over a 

continuous  scale. In the size dimension,  the triangles vary from 1 pixel to thousands of 

pixels;  in the rotation dimension, the triangles vary from 0° to 359.9 ̄°; in the shape 

dimension,  the triangles may be equilateral,  isosceles, scalene,  right-angled,  or anywhere in 

between; and in the location dimension, the triangles  may be located anywhere in the 

plane. Thirdly, the meaning space is not finite. The number of stimuli is limited by the 
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33  These relationships coincide with the literature, which claims that voiceless stops (e.g. [k]) and closed 
unrounded vowels (e.g.  [iː])  tend to be perceived as angular, while voiced stops  (e.g. [d]), sonorants  (e.g. [m]), 
and open rounded vowels (e.g. [əʊ]) tend to be perceived as more rounded (Ahlner & Zlatev, 2010, p. 310).

Figure 4.3 Mean pointedness of triangles that correspond to words containing at least one of the ten 
phonemes that initialized the experiments. The blue bars give the score for generation 0 data across all 
chains, which provides a baseline, since these words were generated randomly and there should be no sound 
symbolic correspondence. The green bars give the score for generations 6—10 across all chains (excluding D).
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density of the pixels  on the display and ultimately by the resolution of the human retina. 

However, even with this limit,  the number of possible triangles is  6 × 1015,  which is infinite 

as  far as the human mind is  concerned. Fourthly,  the meaning space is  not low-

dimensional. The obvious dimensions are shape,  size,  orientation, and location, but the 

systems are not constrained by these four dimensions alone. In fact,  there are certain 

dimensions that none of our metrics  consider, such as reflection, rotation based on some 

property other than the orienting spot, or shape-invariant transformations. While this 

makes the experiments methodologically difficult, it demonstrates that they meet one trait 

of a truly infinite space: a-priori unpredictability of the quality dimensions. The 

implementation of an infinite meaning space is  the primary contribution that this 

dissertation has made.

In order to analyse the data, we needed to devise various novel techniques. These 

included: a measure of distance between two triangles given that one vertex to vertex 

correspondence is  known, along with the seven variants on this metric that involve 

geometrical transformations; a Monte Carlo approach to adjust transmission error scores 

for chance;  and means for visualizing emergent structure through triangle prototyping and 

the use of scatterplots  in triangle shape-size space. We have also demonstrated the use of a 

speech synthesizer in training, which offers  several benefits over the sole use of the written 

modality. These are the secondary contributions that this dissertation has made.

4.4. Criticisms

Since the meaning space is unstructured,  it was not possible to determine a single metric 

that could account for the various types of structure that might emerge. This is major 

problem with this  type of experiment,  and future work should seek novel and better-

founded methods for measuring dissimilarity in an infinite meaning space34. We tried to 

avoid this  problem by keeping an open-mind about the type of structure that might emerge 

and by scrutinizing the languages qualitatively. In fact, there was a high degree of 

correlation between the kind of structure predicted by the scores and what we observed. 

However, this  may be due to the fact that we used the quantitative results to guide our 

qualitative exploration of the data. One way to expand on the structure score we have 
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34  For example, there is  a body of literature that attempts  to tackle some of the problems we face (see Alt, 
Behrends, & Blömer, 1995;  Bronstein, Bronstein, & Kimmel, 2006;  Veltkamp, 2001), although the methods 
are general and would need to be customized for our purposes.



developed here would be to consider the reflection property and also consider all properties 

independently of shape. A better approach would be to run a separate triangle similarity 

judgement task and use a technique such as multidimensional scaling to determine the 

dimensions of  the underlying phenomenal space.

Cornish (2011, p. 90)  makes a good case for using an alternative to the Levenshtein 

distance when dealing with spoken signals. By using a speech synthesizer,  we impose 

phonological structure on the strings, so this  experiment is  arguably better-suited to a 

string-edit metic that is phonetically aware (see Kessler, 2005 for some discussion).

4.5. Conclusion

This  project has implemented an infinite meaning space in a human iterated learning 

experiment. As far as  we are aware,  this has  not been attempted previously. The results 

showed that iterated learning can give rise to categorical structure even when the space is 

infinite in magnitude. Separate chains divided the space in subtly different,  lineage-specific 

ways,  but, in general,  participants  showed a strong bias for the size and shape properties of 

our stimuli. We have also noted an effect of  sound symbolism.

We hope that this  experiment will usher in a movement away from fixed,  monolithic 

meaning spaces to ones that are more representative of our world. Future work could go in 

two directions: (1) additional work on the paradigm we introduce here,  or (2) more complex 

spaces tending ever closer to the infinity of  our universe.
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Appendices

A.    Recruitment invitation

The following advertisement was used to recruit participants. The text was posted on the 

University of  Edinburgh’s SAGE recruitment website.

Earn £5.50 for taking part in a language learning experiment
We are seeking native speakers of English for a language learning task. The language 
you will be learning is  from another universe – the curious  two-dimensional world of the 
Flatlanders. The task should take no longer than 45 minutes, and you will be paid £5.50 
on completion. The participant who learns the language best will also win a £20 Amazon 
voucher! Please sign up for a  slot using this  link: http://doodle.com/26p6vxk8xn8z2chc 
Please email me once you've signed up for a  slot to confirm your appointment. We will 
meet in the foyer of the Dugald Stewart Building on the University of Edinburgh campus. 
If you need to cancel or change your appointment, please let me know as soon as 
possible. Any other questions, feel free to email me at j.w.carr@sms.ed.ac.uk

B.     Written briefing

Prior to taking part in the experiments, participants  read the following text. Underlined text 

applies to experiment 2 only.

You have just entered a  parallel universe that has only two dimensions! This curious 
place is inhabited by an intelligent life form, the Flatlanders, who are obsessed with two-
dimensional shapes and have a huge vocabulary just for triangles alone.

Your task is  to learn the words that the Flatlanders use for triangles to help us establish 
contact with these strange beings. It’s  a pretty difficult task — but we think you’re the 
right person for the job!

Stage 1: Training
You will see a series of triangles, one by one. Each triangle will be presented with its 
name in the Flatlander language. The name will also be pronounced by the computer to 
help you learn it. After every third triangle, you will see one of those three triangles again 
and you must type in its name. This stage is designed to help you learn the language.

Stage 2: Test
Again, you will see a series  of triangles. For each triangle, simply type in what you think 
it’s called based on the training you completed in stage 1. However, if you use the same 
word too frequently, you will see a message asking you to use a different word. The test 
is designed to assess how well you’ve learned the Flatlander language, and there’s a £20 
Amazon voucher for whoever learns it best.

You will learn a lot of words very quickly, and it may be difficult to take it all in. But don’t 
panic! The most important thing is  to maintain good relations with the Flatlanders by 
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giving it your best shot. You must type in an answer for every triangle, but it’s  okay to 
guess  if you’re unsure. Even if you get the word wrong, you’ll still get points  for getting 
the word partially correct.

Good luck!

C.    Oral briefing

The text below is  an approximate phrasing of the oral briefing that participants received 

before starting the experiment. Underlined text applies to experiment 2 only.

There are two stages, the training and the test. In the training, you’ll see three triangles, 
one at a time, each presented with the word to describe it, and then you’ll see one of 
those triangles  again and you just have to type in what the word was for that triangle. 
And then this  repeats a whole bunch of times. Then in the test, you’ll see a series  of 
triangles, again one at a time, and for each one you just type in what you think the word 
is based on the training you did in the first stage. When you’re going through the test, 
you should try to do each one in less  than ten seconds on average, otherwise it’ll just 
take you ages. Also, if you try to use the same word lots  of times, you’ll see a little 
message asking you to use another word – it’s  just to stop you repeating the same word 
too frequently.

D.    Post-test questionnaire

Immediately after completing the experiment,  participants answered the following 

questions. Underlined question applies to experiment 2 only.

1. How difficult was it to learn and recall the words?

very easyvery easyvery easy very hardvery hardvery hard

1 2 3 4 5 6 7 8 9 10

2. Did you identify any patterns in the triangle images? You can draw in the boxes  below 
to help explain any patterns you noticed.

3. Did you identify any patterns in the words?

4. What strategies did you use (if any) to learn the words?

5. The triangles presented in the test phase were not the same as those you learned in 
training. Did you notice this?

6. Did you see the message that warned you against using the same word too 
frequently? Did this restrict you from using a word you thought was correct?

7. Do you have any experience learning languages, or do you speak any languages  other 
than English?
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E.    Debriefing

Participants were given the following debrief  information to take away with them.

This  experiment is  one of many that we are conducting at Edinburgh University to help 
us  understand how languages are learned and how they evolve. The training that you 
completed was  based on the answers  given by another participant. In turn, the answers 
that you gave will become the training material for a  future participant. This allows  us to 
create chains  of learners and look at how the language changes  as  it is passed from one 
person to another.

In this  experiment, we wanted to see how participants would respond to an “infinite 
meaning space”. The meaning space in this  experiment refers to all the possible 
triangles that exist in the Flatlanders’ world. It is  infinite because the triangles were 
generated randomly such that there are essentially an infinite number of possible 
triangles. This reflects the infinite number of meanings that could be expressed in our 
own world using natural languages.

The artificial languages start out random and chaotic, with no systematic way of 
describing the possible shapes. After several generations, however, we predict that the 
languages will begin to evolve structure, so that certain words or certain parts of the 
words will begin to map on to particular aspects  of the shapes. For example, a system 
might emerge where the first syllable describes which way the triangle is  pointing, the 
second syllable describes the thickness  of the the triangle, and the third syllable 
describes its location on the screen.

To motivate you to learn the words as best as  you could, we told you that there was  a 
prize for the best learner. In fact, the prize winner will be selected at random. This is 
because we have no way of objectively measuring the performance of individuals given 
that the languages  are in a constant state of flux and some will be easier to learn than 
others. We also didn’t tell you beforehand that the items  you would be tested on were 
different from those you were trained on. We did this  to see whether participants could 
generalize what they learned in training to the test component of the experiment.

We take our ethical responsibilities seriously, and we hope you do not feel too deceived. 
Your information and results will be stored safely and will remain confidential. Personally 
identifiable information will never be linked to your results or published anywhere. 
However, if you have concerns  about how your information will be used or you would like 
to withdraw your results from the study, please contact Jon Carr at j.w.carr@sms.ed.ac.uk

F.     Data provenance

All code has  been published and versioned on GitHub: http://github.com/jwcarr/infinity.  

The experiment and analyses were run on a MacBook Air running OS X Lion. Version 

numbers of software, libraries, dependencies, and modules used to run the experiment and 

analyses: Apache 2.2.22, GCC 4.2.1,  Google Chrome 27.0, matplotlib 1.2.1,  NumPy 1.5.1, 

pcor 1.0,  PHP 5.3.15, Python 2.7.4, python-Levenshtein 0.10.2, R 3.0.1, randomdotorg 

0.1.3a1,  SciPy 0.12.0. Raw data files  can be downloaded from https://www.dropbox.com/

s/tqbw7hmlngblt88/Flatlanders_2013.zip
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G.    Stimuli in the STABLE SET

All 48 stimuli in the STABLE SET are presented below in no particular order. A coordinate 

system is provided to aid referencing of  the stimuli.

Appendices 49

A

B

C

D

E

F

G

H

1 2 3 4 5 6



References

Abbott, E. A. (1884). Flatland: A romance of  many dimensions. London, UK: Seeley & Co.

Ahlner, F., & Zlatev, J. (2010). Cross-modal iconicity: A cognitive semiotic approach to 
sound symbolism. Sign Systems Studies, 38, 298–347.

Alt,  H., Behrends,  B., & Blömer,  J. (1995). Approximate matching of polygonal shapes. 
Annals of  Mathematics and Artificial Intelligence, 13, 251–265. doi:10.1007/BF01530830

Apple Computer. (2006). Speech synthesis programming guide. Retrieved from https://
developer.apple.com/library/mac/documentation/userexperience/Conceptual/
SpeechSynthesisProgrammingGuide/SpeechSynthesisProgrammingGuide.pdf

Bartlett,  F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge, UK: 
Cambridge University Press.

Beale, J. M., & Keil,  F. C. (1995). Categorical effects in the perception of faces. Cognition, 
57, 217–239. doi:10.1016/0010-0277(95)00669-X

Bickerton,  D. (2007). Language evolution: A brief guide for linguists. Lingua,  117,  510–526. 
doi:10.1016/j.lingua.2005.02.006

Bronstein, A. M.,  Bronstein, M. M., & Kimmel,  R. (2006). Efficient computation of 
isometry-invariant distances  between surfaces. SIAM Journal on Scientific Computing, 28, 
1812–1836. doi:10.1137/050639296

Brown, J. E. (2008). Literacy, linguistics  and compositionality: Investigating the effects of 
cultural systems on learning and language. (Unpublished master’s dissertation). 
University of  Edinburgh, Edinburgh, UK.

Caldwell,  C. A., & Millen,  A. E. (2008). Studying cumulative cultural evolution in the 
laboratory. Philosophical Transactions of the Royal Society B: Biological Sciences,  363, 3529–
3539. doi:10.1098/rstb.2008.0133

Carr,  J. W. (2012). The effects of modified variables on an iterated learning model of 
linguistic evolution by cultural transmission. In T. C. Scott-Phillips, M. Tamariz, E. 
Cartmill,  & J. R. Hurford (Eds.), The evolution of language: Proceedings of the 9th international 
conference (pp. 416–417). Singapore: World Scientific. doi:10.1142/9789814401500_0058

Chomsky, N. (1965). Aspects of  the theory of  syntax. Cambridge, MA: MIT Press.

Christiansen,  M. H.,  & Chater, N. (2008). Language as  shaped by the brain. Behavioral and 
Brain Sciences, 31, 489–558. doi:10.1017/S0140525X08004998

Cornish, H. (2011). Language adapts: Exploring the cultural dynamics of iterated learning. 
(Unpublished doctoral thesis). University of  Edinburgh, Edinburgh, UK.

50

http://dx.doi.org/10.1007/BF01530830
http://dx.doi.org/10.1007/BF01530830
https://developer.apple.com/library/mac/documentation/userexperience/Conceptual/SpeechSynthesisProgrammingGuide/SpeechSynthesisProgrammingGuide.pdf
https://developer.apple.com/library/mac/documentation/userexperience/Conceptual/SpeechSynthesisProgrammingGuide/SpeechSynthesisProgrammingGuide.pdf
https://developer.apple.com/library/mac/documentation/userexperience/Conceptual/SpeechSynthesisProgrammingGuide/SpeechSynthesisProgrammingGuide.pdf
https://developer.apple.com/library/mac/documentation/userexperience/Conceptual/SpeechSynthesisProgrammingGuide/SpeechSynthesisProgrammingGuide.pdf
https://developer.apple.com/library/mac/documentation/userexperience/Conceptual/SpeechSynthesisProgrammingGuide/SpeechSynthesisProgrammingGuide.pdf
https://developer.apple.com/library/mac/documentation/userexperience/Conceptual/SpeechSynthesisProgrammingGuide/SpeechSynthesisProgrammingGuide.pdf
http://dx.doi.org/10.1016/0010-0277(95)00669-X
http://dx.doi.org/10.1016/0010-0277(95)00669-X
http://dx.doi.org/10.1016/j.lingua.2005.02.006
http://dx.doi.org/10.1016/j.lingua.2005.02.006
http://dx.doi.org/10.1137/050639296
http://dx.doi.org/10.1137/050639296
http://dx.doi.org/10.1098/rstb.2008.0133
http://dx.doi.org/10.1098/rstb.2008.0133
http://dx.doi.org/10.1142/9789814401500_0058
http://dx.doi.org/10.1142/9789814401500_0058
http://dx.doi.org/10.1017/S0140525X08004998
http://dx.doi.org/10.1017/S0140525X08004998


Croft, W. (2000). Explaining language change: An evolutionary approach. London, UK: Longman.

Darwin,  C. (1859). On the origin of species by means of natural selection, or the preservation of favoured 
races in the struggle for life. London, UK: John Murray.

del Giudice,  A. (2012). The emergence of duality of patterning through iterated learning: 
Precursors  to phonology in a visual lexicon. Language and Cognition,  4,  381–418. doi:
10.1515/langcog-2012-0020

Duda, R. O., Heart,  P. E., & Stork,  D. G. (2001). Pattern classification (2nd ed.). New York, 
NY: Wiley.

Evans,  N.,  & Levinson, S. C. (2009). The myth of language universals: Language diversity 
and its importance for cognitive science. Behavioral and Brain Sciences, 32, 429–492. doi:
10.1017/S0140525X0999094X

Fay, N.,  Garrod,  S.,  Roberts,  L., & Swoboda, N. (2010). The interactive evolution of 
human communication systems. Cognitive Science, 34,  351–386. doi:10.1111/j.
1551-6709.2009.01090.x

Galantucci,  B. (2005). An experimental study of the emergence of human communication 
systems. Cognitive Science, 29, 737–767. doi:10.1207/s15516709cog0000_34

Gärdenfors, P. (2000). Conceptual spaces: The geometry of  thought. Cambridge, MA: MIT Press.

Garrod,  S.,  Fay, N., Lee,  J., Oberlander, J., & MacLeod, T. (2007). Foundations of 
representation: Where might graphical symbol systems come from? Cognitive Science,  31, 
961–987. doi:10.1080/03640210701703659

Goldstone, R. L.,  & Hendrickson, A. T. (2009). Categorical perception. WIREs Cognitive 
Science, 1, 69–78. doi:10.1002/wcs.26

Griffiths,  T. L.,  & Kalish,  M. L. (2007). Language evolution by iterated learning with 
Bayesian agents. Cognitive Science, 31, 441–480. doi:10.1080/15326900701326576

Harnad, S. (1987). Categorical perception: The groundwork of cognition. Cambridge, UK: 
Cambridge University Press.

Horner, V.,  Whiten, A.,  Flynn, E., & de Waal,  F. B. M. (2006). Faithful replication of 
foraging techniques along cultural transmission chains  by chimpanzees and children. 
Proceedings of the National Academy of Sciences of the USA,  103,  13878–13883. doi:10.1073/
pnas.0606015103

Hurford,  J. R. (1989). Biological evolution of the Saussurean sign as a component of the 
language acquisition device. Lingua, 77, 187–222. doi:10.1016/0024-3841(89)90015-6

Jackendoff, R. (2002). Foundations of language: Brain, meaning, grammar, evolution. Oxford, UK: 
Oxford University Press.

Keller, R. (1994). On language change: The invisible hand in language. (B. Nerlich, Trans.). 
London, UK: Routledge.

Kessler, B. (2005). Phonetic comparison algorithms. Transactions of the Philological Society,  103, 

References 51

http://dx.doi.org/10.1515/langcog-2012-0020
http://dx.doi.org/10.1515/langcog-2012-0020
http://dx.doi.org/10.1017/S0140525X0999094X
http://dx.doi.org/10.1017/S0140525X0999094X
http://dx.doi.org/10.1111/j.1551-6709.2009.01090.x
http://dx.doi.org/10.1111/j.1551-6709.2009.01090.x
http://dx.doi.org/10.1111/j.1551-6709.2009.01090.x
http://dx.doi.org/10.1111/j.1551-6709.2009.01090.x
http://dx.doi.org/10.1207/s15516709cog0000_34
http://dx.doi.org/10.1207/s15516709cog0000_34
http://dx.doi.org/10.1080/03640210701703659
http://dx.doi.org/10.1080/03640210701703659
http://dx.doi.org/10.1002/wcs.26
http://dx.doi.org/10.1002/wcs.26
http://dx.doi.org/10.1080/15326900701326576
http://dx.doi.org/10.1080/15326900701326576
http://dx.doi.org/10.1073/pnas.0606015103
http://dx.doi.org/10.1073/pnas.0606015103
http://dx.doi.org/10.1073/pnas.0606015103
http://dx.doi.org/10.1073/pnas.0606015103
http://dx.doi.org/10.1016/0024-3841(89)90015-6
http://dx.doi.org/10.1016/0024-3841(89)90015-6


243–260. doi:10.1111/j.1467-968X.2005.00153.x

King,  R. (2011). Exploring expressivity: A closer look at the evolution of linguistic structure. 
(Unpublished master’s dissertation). University of  Edinburgh, Edinburgh, UK.

Kirby,  S. (1999). Function, selection, and innateness: The emergence of language universals. Oxford, 
UK: Oxford University Press.

Kirby,  S. (2002a). Learning,  bottlenecks  and the evolution of recursive syntax. In E. J. 
Briscoe (Ed.),  Linguistic evolution through  language acquisition: Formal and computational models 
(pp. 173–203). Cambridge, UK: Cambridge University Press. doi:10.1017/CBO9780 
511486524.006

Kirby,  S. (2002b). Natural language from artificial life. Artificial Life, 8, 185–215. doi:
10.1162/106454602320184248

Kirby,  S. (2007). The evolution of meaning-space structure through iterated learning. In C. 
Lyon,  C. L. Nehaniv, & A. Cangelosi (Eds.), Emergence of communication and language (pp. 
253–267). London, UK: Springer-Verlag. doi:10.1007/978-1-84628-779-4_13

Kirby,  S.,  & Hurford, J. R. (2002). The emergence of linguistic structure: An overview of 
the iterated learning model. In A. Cangelosi & D. Parisi (Eds.),  Simulating  the evolution of 
language (pp. 121–147). London, UK: Springer Verlag.

Kirby,  S.,  Cornish,  H.,  & Smith, K. (2008). Cumulative cultural evolution in the laboratory: 
An experimental approach to the origins of structure in human language. Proceedings of 
the National Academy of Sciences of the USA,  105,  10681–10686. doi:10.1073/pnas.
0707835105

Kirby,  S.,  Dowman, M., & Griffiths,  T. L. (2007). Innateness and culture in the evolution of 
language. Proceedings of the National Academy of Sciences of the USA, 104,  5241–5245. doi:
10.1073/pnas.0608222104

Laland, K. N.,  & Williams, K. (1997). Shoaling generates  social learning of foraging 
information in guppies. Animal Behaviour, 53, 1161–1169. doi:10.1006/anbe.1996.0318

Landau, B.,  Smith,  L. B.,  & Jones, S. S. (1988). The importance of shape in early lexical 
learning. Cognitive Development, 3, 299–321. doi:10.1016/0885-2014(88)90014-7

Levenshtein,  V. I. (1966). Binary codes capable of correcting deletions, insertions, and 
reversals. Soviet Physics Doklady, 10, 707–710.

Liberman, A. M., Harris,  K. S., Hoffman, H. S. & Griffith,  B. C. (1957). The 
discrimination of speech sounds  within and across  phoneme boundaries. Journal of 
Experimental Psychology, 54, 358–368. doi:10.1037/h0044417

Lupyan,  G.,  & Dale, R. (2010). Language structure is  partly determined by social structure. 
PLoS ONE, 5, e8559. doi:10.1371/journal.pone.0008559

Mantel,  N. (1967). The detection of disease clustering and a generalized regression 
approach. Cancer Research, 27, 209–220.

Matthews, C. (2009). The emergence of categorization: Language transmission in an 

References 52

http://dx.doi.org/10.1111/j.1467-968X.2005.00153.x
http://dx.doi.org/10.1111/j.1467-968X.2005.00153.x
http://dx.doi.org/10.1017/CBO9780511486524.006
http://dx.doi.org/10.1017/CBO9780511486524.006
http://dx.doi.org/10.1017/CBO9780511486524.006
http://dx.doi.org/10.1017/CBO9780511486524.006
http://dx.doi.org/10.1162/106454602320184248
http://dx.doi.org/10.1162/106454602320184248
http://dx.doi.org/10.1007/978-1-84628-779-4_13
http://dx.doi.org/10.1007/978-1-84628-779-4_13
http://dx.doi.org/10.1073/pnas.0707835105
http://dx.doi.org/10.1073/pnas.0707835105
http://dx.doi.org/10.1073/pnas.0707835105
http://dx.doi.org/10.1073/pnas.0707835105
http://dx.doi.org/10.1073/pnas.0608222104
http://dx.doi.org/10.1073/pnas.0608222104
http://dx.doi.org/10.1006/anbe.1996.0318
http://dx.doi.org/10.1006/anbe.1996.0318
http://dx.doi.org/10.1016/0885-2014(88)90014-7
http://dx.doi.org/10.1016/0885-2014(88)90014-7
http://dx.doi.org/10.1037/h0044417
http://dx.doi.org/10.1037/h0044417
http://dx.doi.org/10.1371/journal.pone.0008559
http://dx.doi.org/10.1371/journal.pone.0008559


iterated learning model using a continuous  meaning space. (Unpublished master’s 
dissertation). University of  Edinburgh, Edinburgh, UK.

Maynard Smith, J., & Szathmáry, E. (1995). The major transitions in evolution. Oxford, UK: 
Oxford University Press.

Mesoudi,  A. (2011). Cultural evolution: How Darwinian theory can explain human culture and 
synthesize the social sciences. Chicago, IL: University of  Chicago Press.

Mesoudi,  A., & Whiten, A. (2008). The multiple roles of cultural transmission experiments 
in understanding human cultural evolution. Philosophical Transactions of the Royal Society 
B: Biological Sciences, 363, 3489–3501. doi:10.1098/rstb.2008.0129

Monaghan, P.,  Christiansen,  M. H.,  & Fitneva, S. A. (2011). The arbitrariness of the sign: 
Learning advantages  from the structure of the vocabulary. Journal of Experimental 
Psychology: General, 140, 325–347. doi:10.1037/a0022924

Murray, K. (2009). Issues of literacy, issues  of modality: Language evolution from a cultural 
perspective. (Unpublished master’s dissertation). University of  Edinburgh, Edinburgh, UK.

Murray, L. (2010). Iterated learning with human subjects: Adding communication and 
feedback. (Unpublished master’s dissertation). University of  Edinburgh, Edinburgh, UK.

Nuckolls,  J. B. (1999). The case for sound symbolism. Annual Review of Anthropology, 28,  225–
252. doi:10.1146/annurev.anthro.28.1.225

Nygaard,  L. C., Cook,  A. E.,  & Namy, L. L. (2009). Sound to meaning correspondences 
facilitate word learning. Cognition, 112, 181–186. doi:10.1016/j.cognition.2009.04.001

Oliphant, M. (1996). The dilemma of  Saussurean communication. BioSystems, 37, 31–38.

Ó Searcóid, M. (2007). Metric spaces. London, UK: Springer-Verlag.

Page,  E. (1963). Ordered hypotheses  for multiple treatments: A significance test for linear 
ranks. Journal of  the American Statistical Association, 58, 216–230.

Parault, S., & Schwanenflugel,  P. (2006). Sound-symbolism: A piece in the puzzle of word 
learning. Journal of  Psycholinguistic Research, 35, 329–351. doi:10.1007/s10936-006-9018-7

Perfors, A., & Navarro,  D. (2011). Language evolution is shaped by the structure of the 
world: An iterated learning analysis. In L. Carlson,  C. Hoelscher,  & T. F. Shipley (Eds.), 
Proceedings of the 33rd annual conference of the Cognitive Science Society  (pp. 477–482). Austin, 
TX: Cognitive Science Society.

Pinker, S. (1994). The language instinct. London, UK: Penguin.

Pinker, S., & Bloom, P. (1990). Natural language and natural selection. Behavioral and Brain 
Sciences, 13, 707–784. doi:10.1017/S0140525X00081061

Pullum,  G., & Scholz,  B. (2002). Empirical assessment of stimulus  poverty arguments. The 
Linguistic Review, 19, 9–50. doi:10.1515/tlir.19.1-2.9

Richerson, P. J., & Boyd, R. (2005). Not by genes alone: How culture transformed human evolution. 
Chicago, IL: University of  Chicago Press.

References 53

http://dx.doi.org/10.1098/rstb.2008.0129
http://dx.doi.org/10.1098/rstb.2008.0129
http://dx.doi.org/10.1037/a0022924
http://dx.doi.org/10.1037/a0022924
http://dx.doi.org/10.1146/annurev.anthro.28.1.225
http://dx.doi.org/10.1146/annurev.anthro.28.1.225
http://dx.doi.org/10.1016/j.cognition.2009.04.001
http://dx.doi.org/10.1016/j.cognition.2009.04.001
http://dx.doi.org/10.1007/s10936-006-9018-7
http://dx.doi.org/10.1007/s10936-006-9018-7
http://dx.doi.org/10.1017/S0140525X00081061
http://dx.doi.org/10.1017/S0140525X00081061
http://dx.doi.org/10.1515/tlir.19.1-2.9
http://dx.doi.org/10.1515/tlir.19.1-2.9


Roberson,  D.,  Davidoff,  J. B.,  Shapiro, L. (2002). Squaring the circle: The cultural relativity 
of ‘good’ shape. Journal of Cognition and Culture,  2, 29–51. doi:10.1163/15685370 
2753693299

Schoenemann,  P. T. (2009). Evolution of brain and language. Language Learning, 59,  162–
186. doi:10.1111/j.1467-9922.2009.00539.x

Scott-Phillips, T. C., & Kirby, S. (2010). Language evolution in the laboratory. Trends in 
Cognitive Sciences, 14, 411–417. doi:10.1016/j.tics.2010.06.006

Scott-Phillips, T. C., Kirby, S., & Ritchie,  G. R. S. (2009). Signalling signalhood and the 
emergence of communication. Cognition,  113, 226–233. doi:10.1016/j.cognition.
2009.08.009

Selten,  R.,  & Warglien,  M. (2007). The emergence of simple languages  in an experimental 
coordination game. Proceedings of the National Academy of Sciences of the USA, 104,  7361–
7366. doi:10.1073/pnas.0702077104

Seyfarth,  S. (2010). Auditory diffusion chains as a laboratory method for studying sound 
change and cultural evolution. (Unpublished undergraduate dissertation). Northwestern 
University, Evanston, IL, USA.

Shannon,  C. E. (1948). A mathematical theory of communication. Bell System Technical 
Journal, 27, 379–423.

Shepard,  R. N. (1987). Toward a universal law of generalization for psychological science. 
Science, 237, 1317–1323. doi:10.1126/science.3629243

Smith, K. (2004). The evolution of vocabulary. Journal of Theoretical Biology,  228, 127–142. 
doi:10.1016/j.jtbi.2003.12.016

Smith, K., Brighton,  H., & Kirby, S. (2003). Complex systems in language evolution: The 
cultural emergence of compositional structure. Advances in Complex Systems,  6, 537–558. 
doi:10.1142/S0219525903001055

Smith, K.,  & Wonnacott,  E. (2010). Eliminating unpredictable variation through iterated 
learning. Cognition, 116, 444–449. doi:10.1016/j.cognition.2010.06.004

Steels, L. (1997). The synthetic modeling of language origins. Evolution of Communication, 1, 
1–34. doi:10.1075/eoc.1.1.02ste

Studdert-Kennedy,  M. (2005). How did language go discrete? In M. Tallerman (Ed.) 
Language origins: Perspectives on evolution (pp. 48–67). Oxford,  UK: Oxford University 
Press.

Veltkamp, R. C. (2001). Shape matching: Similarity measures and algorithms. In SMI 2001 
Conference on Shape Modeling  and Applications (pp. 188–197). IEEE Computer Society. doi:
10.1109/SMA.2001.923389

Verhoef,  T. (2012). The origins  of duality of patterning in artificial whistled languages. 
Language and Cognition, 4, 357–380. doi:10.1515/langcog-2012-0019

Winawer, J.,  Witthoft,  N., Frank,  M. C., Wu, L., Wade, A. R., & Boroditsky, L. (2007). 

References 54

http://dx.doi.org/10.1163/156853702753693299
http://dx.doi.org/10.1163/156853702753693299
http://dx.doi.org/10.1163/156853702753693299
http://dx.doi.org/10.1163/156853702753693299
http://dx.doi.org/10.1111/j.1467-9922.2009.00539.x
http://dx.doi.org/10.1111/j.1467-9922.2009.00539.x
http://dx.doi.org/10.1016/j.tics.2010.06.006
http://dx.doi.org/10.1016/j.tics.2010.06.006
http://dx.doi.org/10.1016/j.cognition.2009.08.009
http://dx.doi.org/10.1016/j.cognition.2009.08.009
http://dx.doi.org/10.1016/j.cognition.2009.08.009
http://dx.doi.org/10.1016/j.cognition.2009.08.009
http://dx.doi.org/10.1073/pnas.0702077104
http://dx.doi.org/10.1073/pnas.0702077104
http://dx.doi.org/10.1126/science.3629243
http://dx.doi.org/10.1126/science.3629243
http://dx.doi.org/10.1016/j.jtbi.2003.12.016
http://dx.doi.org/10.1016/j.jtbi.2003.12.016
http://dx.doi.org/10.1142/S0219525903001055
http://dx.doi.org/10.1142/S0219525903001055
http://dx.doi.org/10.1016/j.cognition.2010.06.004
http://dx.doi.org/10.1016/j.cognition.2010.06.004
http://dx.doi.org/10.1075/eoc.1.1.02ste
http://dx.doi.org/10.1075/eoc.1.1.02ste
http://dx.doi.org/10.1109/SMA.2001.923389
http://dx.doi.org/10.1109/SMA.2001.923389
http://dx.doi.org/10.1515/langcog-2012-0019
http://dx.doi.org/10.1515/langcog-2012-0019


Russian blues  reveal effects of language on color discrimination. Proceedings of the 
National Academy of  Sciences of  the USA, 104, 7780–7785. doi:10.1073/pnas.0701644104

Winters, J. (2009). Adaptive structure, cultural transmission and language: Investigating a 
population dynamic in human iterated learning. (Unpublished master’s dissertation). 
University of  Edinburgh, Edinburgh, UK.

Zuidema,  W., & de Boer,  B. (2009). The evolution of combinatorial phonology. Journal of 
Phonetics, 37, 125–144. doi:10.1016/j.wocn.2008.10.003

References 55

http://dx.doi.org/10.1073/pnas.0701644104
http://dx.doi.org/10.1073/pnas.0701644104
http://dx.doi.org/10.1016/j.wocn.2008.10.003
http://dx.doi.org/10.1016/j.wocn.2008.10.003

