Iterated learning in an open-ended meaning space

Jon W. Carr Language Evolution and Computation Research Unit School of Philosophy, Psychology and Language Sciences University of Edinburgh

Categorical structure

Compositional structure

Blue	Green
1	2
3	4

The way in which the parts are combined

Compositional structure

The way in which the parts are combined

Compositional structure

The way in which the parts are combined

Iterated learning

Languages get more learnable as they adapt to this process of iteration

Languages get more systematic in terms of:

- categorical structure in the meaning space
- compositional structure in the signal space

Discrete meaning spaces

Kirby, Cornish, & Smith (2008)

Continuous meaning spaces

Perfors & Navarro (2014)

An open-ended meaning space

Complex dimensions: Many possible dimensions to the space

Continuous: On each dimension, the triangle stimuli vary over a continuous scale

Vast in magnitude: 6×10^{15} possible triangle stimuli

Not pre-specified by the experimenter: no particular hypothesis about which features participants would find salient

Hypotheses

Hypothesis 1: the languages will become easier to learn

Hypothesis 2: categorical structure will emerge in the meaning space

Hypothesis 3: compositional structure will emerge in the signal space

Transmission paradigm

Training phase

each item mini-tested onceeach item presented three times144 total presentations

Test phase

Measure of learnability

Transmission error is the mean normalized Levenshtein distance:

$$e(i) = \frac{1}{|M|} \sum_{m \in M} \frac{\text{LD}(s_i^m, s_{i-1}^m)}{\max(\text{len}(s_i^m), \text{len}(s_{i-1}^m))}$$

Learnability is transmission error adjusted for chance using a Monte Carlo method

Measure of structure

The languages are essentially mappings between signals and meanings

To measure structure, we correlate the dissimilarity between pairs of strings with the dissimilarity between pairs of triangles for all n(n-1)/2 pairs

We then perform a Mantel test (Mantel, 1967) which compares this correlation against a distribution of correlations for Monte-Carlo permutations of the signalmeaning pairs

This yields a standard score (z-score) quantifying the significance of the observed correlation

Normalized Levenshtein distance used to measure the dissimilarity between pairs of strings

Triangle dissimilarity metric

Size features			
Area			
Perimeter			
Centroid size			
Positional features			
Location of dot on <i>x</i> -axis			
Location of dot on y-axis			
Location of centroid on x-axis			
Location of centroid on <i>y</i> -axis			
Orientational features			
Radial distance from North by dot			
Radial distance from North by thinnest angle			
Shape feattures			
Angle of thinnest vertex			
Angle of widest vertex			
Standard deviation of angles			
Bounding box features			
Distance from dot to nearest corner			
Distance from dot to nearest edge			
Mean distance from vertices to nearest			
Mean distance from vertices to nearest edge			

Euclidean distance through the feature space:

$$d(a,b) = \sqrt{\sum_{f\in F} (a_f - b_f)}$$

 $(b_f)^2$

Online dissimilarity experiment

Increase in learnability

Emergence of structure

Categorical structure

Categorical structure

Transmission paradigm

Training phase

Communication phase

Communication phase

Communication phase

Increase in learnability

Emergence of structure

Emergence of *compositional* structure

Normal shuffle

Category shuffle

kik	1	kik
mappafiki	2	kik
kik	3	dazari
dazari	4	dazari
kik	5	fumo
mappafiki	6	dazari
dazari	7	dazari
fumo	8	dazari
kik	9	fumo
dazari	10	fumo
kik	11	fumo
dazari	12	mappafiki
dazari	13	dazari
fumo	14	fumo
fumo	15	dazari
kik	16	dazari
mappafiki	17	fumo
kik	18	fumo
dazari	19	mappafiki
mappafiki	20	mappafiki
kik	21	dazari
dazari	22	kik
kik	23	dazari
kik	24	kik

Emergence of *compositional* structure

Conclusions

Hannah Cornish

Simon Kirby

Kenny Smith

Thanks!

References

- Kirby, S., Cornish, H., & Smith, K. (2008). Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language. Proceedings of the National Academy of Sciences of the USA, 105, 10681–10686.
- Gärdenfors, P. (2000). Conceptual spaces: The geometry of thought. Cambridge, MA: MIT Press.
- Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals. Soviet *Physics Doklady*, 10, 707–710.
- Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209-220.

- Edinburgh, UK.
- *Science*, *38*, 775–793.
- 1317). Austin, TX: Cognitive Science Society.

Matthews, C. (2009). The emergence of categorization: Language transmission in an iterated learning model using a continuous meaning space. (Unpublished master's dissertation). University of Edinburgh,

Perfors, A., & Navarro, D. J. (2014). Language evolution can be shaped by the structure of the world. *Cognitive*

Silvey, C., Kirby, S., & Smith, K. (2013). Communication leads to the emergence of sub-optimal category structures. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th annual conference of the Cognitive Science Society (pp. 1312-