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How do learning and
communication shape the
structure of semantic
categories?



3 pressure for simplicity

= a pressure for informativeness
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Learning and communication in the CLE framework
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CLE

Regier

Summary

Pressure from learning Pressure from communication

Compressibility: To what
extent can the language
be compressed?
Measure: MDL, gzip,
entropy

Expressivity: How many
meaning distinctions does
the language allow?
Measure: Number of
words

Informativeness: How
effectively can a meaning
be transmitted?

Measure: Communicative

Simplicity: How many
words does an individual
need to remember?
Measure: Number of
words, number of rules

Cost




Summary

Pressure from learning Pressure from communication

Informativeness: How
effectively can a meaning
be transmitted?

Compressibility: To what
extent can the language
be compressed?

Measure: Communicative
cost

Measure: MDL, gzip,
entropy

bits required to represent the language bits lost during communication



Communicative cost
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To compute the cost of a category partition, we start by considering a individual target meaning
and compute how much error would be incurred in trying to reconstruct that target

Reconstruction error is defined as the Kullback-Leibler divergence between s and /-

D (s/[1) = 3 s(0) log % ~ logy
reU

Summing the divergences for all targets yields the communicative cost for the partition:
k= p(t)Dxw(s[])

teU

k=3 p(t)logs 1
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Communicative cost: Example of a discrete cateqgorizer
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Humans aren’t discrete categorizers; in human cognition, we see two effects:

(@) within-category prototypicality

(b) across-category fuzziness

Instead, the listener
distributions can be

modelled as Gaussians:
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Communicative cost k&
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When communicating, interlocutors want to align as closely as possible on the same meaning in
the face of:

(@) the speaker’s uncertainty about the true meaning
(b) the lossy information conveyed to the listener by a general category

Communicative cost tells us how ‘good’ a partition is in the context of using it for
communication

A good partition results, on average, in low information loss (it has low communicative cost)

This model makes various predictions about what makes a language informative



Studies of
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Iterated learning &
informativeness




Carstensen, Xu, Smith, & Reqier (2015, p. 303):

Our] prior work has also left an important question unaddressed. In a commentary on
Kemp and Regier’s (2012) kinship study, Levinson (2012) pointed out that although [our]
research explains cross-language semantic variation in communicative terms, it does not
tell us “where our categories come from” (p. 989); that is, it does not establish what
process gives rise to the diverse attested systems of informative categories. Levinson
suggested that a possible answer to that question may lie in a line of experimental work
that explores human simulation ot cultural transmission in the laboratory, and “shows how
categories get honed through iterated learning across simulated generations” (p. 989). We
agree that prior work explaining cross-language semantic variation in terms of informative
communication has not yet addressed this central question, and we address it here.

Although their model of informativeness is framed in terms of the communicative benefit, in this
paragraph they appear to be open to the idea that there could be an explanation from learning




It true, this doesn’t sit well with our (post-20157?) framework which says that:
(@) communication promotes informativeness/expressivity, and

(b) (iterated) learning promotes simplicity/compressibility

However, they present two iterated learning studies in support of this idea
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Study 2: Iterated learning gives rise to informative spatial terms
Carstensen, Xu, Smith, & Regier (2015)
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The paper sets out to establish what process gives rise to informative categories

Their results suggest that informative categories may arise cumulatively through iterated learning
The effect can't be driven by expressivity, since the number ot categories is fixed

Problem 1: What's the mechanism? Why should learning care about inftormativeness?

Problem 2: Both experiments only test iterated learning; there is no experiment testing the effect
of communication alone

Problem 3: Both experiments force participants to use a certain number of categories, so our
prediction that learning should lead to simplicity can’t be observed

Solution? Since the languages can’t simplity, the only effect a participant can have is to
introduce a more sensible structuring of the space; over time, these effects add up to more
informative systems
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Size-only

Easy to learn but low informativeness

Angle & Size

Informative but hard to learn



20-minute online experiment run on CrowdFlower

40 participants per condition

Paid S3 + bonuses for getting answers correct (potentially up to $4.92)
Training phase in which they learn an artificial language

Test phase in which they produce a word for each meaning
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Experiment 2



Comprehension test
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Simulated
communication



Euclidean distance to correct answer

Perfect producer ™ all 40 comprehenders
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Conclusions



Regier’s lab has shown that real languages are at the optimal frontier of informativeness
and simplicity

Meanwhile, we've been interested in explaining which pressures explain informativeness
and simplicity by using artificial languages

Both frameworks share many commonalities and may be amenable to a unifying
information-theoretic model

Their first work with iterated learning suggests that communication is not required for
informative lanquages; learning alone may be enough

However, our initial experiments suggest that informativeness is driven by
communication

Perhaps the result would be stronger with a genuine communicative task
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