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The simplicity—informativeness tradeoff
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Kinship terms are simple and informative
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Learning and interaction pressures
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Induction

as the pressure for simplicity



The Minimum Description Length principle

DL(H|D) = DL(D|H) + DL(H)
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The Minimum Description Length principle

Any reqgular

The more re
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For example...

010010111110010000110001000101101100001111010001
print('010010111110010000110001000101101100001111010001 ")

010101010101010101010101010101010101010101010101

print('0101'x12) or print('01'x24)

ompressed



The Minimum Description Length principle

DL(H|D) = DL(D|H) + DL(H)
posterior(H|D) o likelihood(D|H) x 2~ PLH)

Any reqularities in data can be used to compress that data
The more reqgularities there are, the more the data can be compressed

We equate learning with compression: The more the data can be
compressed, the more insight we gain from that data



The Minimum Description Length principle

DL(H|D) = DL(D|H) + DL(H)
posterior(H|D) o likelihood(D|H) x 2~ PLH)

Any reqularities in data can be used to compress that data
The more reqgularities there are, the more the data can be compressed

We equate learning with compression: The more the data can be
compressed, the more insight we gain from that data

In other words, the more regularity we can identity, the more we can
predict what the generating process will do next



The Minimum Description Length principle

DL(H|D) = DL(D|H) + DL(H)
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The Minimum Description Length principle
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The Minimum Description Length principle

DL(H|D) = DL(D|H) + DL(H)

DL(D|H) 10 bits 4 bits O bits

DL(H) 1 bit 4 bits 10 bits

DL(H|D) 11 bits 8 bits ¢ 10 bits




The Minimum Description Length principle

Bayesian interpretation: MDL is closely related to

the Bayesian inference
v, H™ Occam’s razor: MDL trades-oft goodness-of-fit with
Uﬂln";nu m model complexity, embodying Occam’s razor
Description No overfitting: MDL automatically guards against

overfitting noise in data

Length

= =

Princi [ﬁﬂ@ tformally equivalent to probabilistic prediction, MDL

Predictive performance: Since data compression is

e

I

finds models offering good predictive performance
on unseen data
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as the pressure for informativeness



Regier et al.'s informativeness model

~_ =
9 &

—
e’

i

speaker target listener

B l-_

universe



Regier et al.'s informativeness model
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Regier et al.'s informativeness model
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Regier et al.'s informativeness model
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Expressivity A system of many cateqgories is
more informative than a system of few
categories

Compactness A system of compact categories
is more informative than a system of
noncompact categories

Meaning
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Language evolution in the 1ab tends toward informative communication

Jing Xu* (jin

(abc@ pberkeley .edu)

u@jhmi edu)

Cameron T. Smith’ (vmpfcl @berkeley edu)
Terry Regier™” (terry regier@berkeley edu)

Department of Psychology,1 Department of Linguistics,2 Cognitive Science Pro gram3
University of California, Berkeley, CA 94720 USA

Department of Neurology, Johns Hopkins University, Baltimore, MD 21287 USA’

Abstract

Why do languages parcel human experience into categories in
the ways they do? Languages vary widely in their category
systems but not arbitrarily, and one possibility is that this
constrained yariation reflects universal communicative needs.
Consistent with this idea, it has been shown that attested
category systems tend tO support highly informative
communication. However it i8 not yet known what process

systems of semantic categories that converge toward greater
informativeness, in the domains of color and spatial relations.
These findings suggest that larger-scale cultural transmission
over historical time could have produced the diverse Yet
informative category systems found in the world’s languages-

Keywords: Informative communication, language evolution,
iterated Jearning, cultural transmission, spatial cognition,
color naming, semantic universals.

The origins of semantic diversity

Languages vary widely in their fundamental units of
meaning—the concepts and categories they encode in single
words or other pasic forms. For example, sOme languages
. ue a single color term spanning green and blue (Berlin &

0 SPETT2 01 term that captures the

N

Regier’s (2012) kinship study, Levinson (2012) pointed out
that although that research explains cross-language semantic
yariation in communica iye terms, it does not tell us “where
our categories come from” (p. 989): that is, it does not
establish what process gives rise to the diverse attested
systems of informative categories. Levinson suggested that
a possible answer to that question may lie in a line of
experimental work that explores human simulation of
cultural transmission in the laboratory, and “shows how
categories get honed through iterated learning across
simulated generations” (p. 989)- We agree that prior work
explaining cross-language semantic yariation in terms of
informative communication has not Yet addressed this
central question, and we address it here.

Iterated Jearning and category systems

The general idea behind iterated learning studies is that of
a chain or sequence of learners. The first person in the chain
produces some behavior; the next person in the chain
observes that behavior, learns from it, and then produces
behavior of her own; that learned behavior 18 then observed
by the next person in the chain, who learns from it, and sO
on. This experimental paradigm is meant tO capture 1n
miniature the transmission and alteration of cultural
information across generations; the learned behavior

ST T s filtered through the chain of

4/
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Could humans have a learning bias for informativeness?
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Could humans have a learning bias for informativeness?

Generation 0 Generation 10

Carstensen, Xu, Smith, Regier (2015)



Could humans have a learning bias for informativeness?
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Communicative cost
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Generation

Carstensen, Xu, Smith, Regier (2015)
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Bayesian inference

- B8 BECH e N8 561 S

D = [(m1,s1), (M2, S2), (M3, 83), cce, (M, Sn )|




Bayesian inference

-8 BECH Fes S8 ESSH S

D = [(m1,s1), (M2, S2), (M3, 83), cce, (M, Sn )|

1
likelihood(D|L) o< | ] = P(s|L,m)




Bayesian inference
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D = [(m1,s1), (M2, S2), (M3, 83), cce, (M, Sn )|

1
likelihood(D|L) o< | ] | M|P(S\L,m)
(m,s)ED

prior(L) oc 27 PLL)




Bayesian inference

Mﬁﬂﬁﬁﬂﬁ

D = [(m1,s1), (M2, S2), (M3, 83), cce, (M, Sn )|

1
likelihood(D|L) o< | ] | M|P(3\L,m)
(m,s)ED

prior(L) oc 27 PLL)

posterior(L|D) o likelihood(D|L) x prior(L)




Computing DL(L): The rectanal~"=~

exity: A Unified

1%x1 16
1x2 12
13 8 Categorization Under Compl
1vd 4 MDL Account of Human Learning of Regular
751 5 and Irregular Categories
2x2 9 - —
2%3
6 David Fass Jacob Feldman™
2x4 3 Department of Psychology Department of Psychology
Center for Cognitive Science Center for Cognitive Science
3x1 3 Rutgers University Rutgers University
Piscataway, NJ 08854 Piscataway, NJ 08854
3x2 6 dfass@ruccs: rutgers. edu jacob@ Yuccs. rutgers. edu
3%3 4
3x4 ) Abstract
4x1 4 We present an account of human concept learning—that is, learning of
AxD categories from examples——based on the principle of minimum descrip-
X 3 tion len L). In support of this theory, W€ tested a wide 1ange
Ax3 of two-dimensional concept types including both 1€ lar (simple) an
2 highly irregular (complex) structures, and found the MDL theory to g1ve
AxA a good account of subjects’ performance. This suggests that the intrin-
1 sic complexity of a concept (that is, 1S description length) systematically
influences 1ts learnability.

{ The Structure of Categories
plain the manner in which hu-

have been advanced to €X
ested that the underlying prin-

A number
mans learn 0 categorize objects. 1t has been variously sug
milarity structure of objects [1], the manipulability of decision bound-
ies are mathematically

~inle might be the si
- S e anee 131141 While many
1atly o se of experime
e« 1A+ t
l

of different principles




Computing DL(L): The rectangle code

Positions Probability Codelength (bits) Uniformly sample a class

1x1 16 1716 x 1/16 —log 1/256 8.0
1x2 12 1716 x 1/12 —log 1/192 /.58
1x3 3 1716 x 1/8 —log 1/128 /7.0
1x4 4 1716 x 1/4 —log 1/64 6.0
2x1 12 1716 x 1/12 —log 1/192 /.58
2x2 9 1716 x 1/9 —log 1/144 7.17
2x3 6 1716 x 1/6 —log 1/96 6.58
2x4 3 1716 x 1/3 —log 1/48 5.58 Uniformly sample a position
3x1 8 1716 x 1/8 —log 1/128 /7.0
3x2 6 1716 x 1/6 —log 1/96 6.58
3x3 4 1716 x 1/4 —log 1/64 6.0
3x4 2 1716 x 1/2 —log 1/32 5.0
4x1 4 1716 x 1/4 —log 1/64 6.0
Ax2 3 1716 x 1/3 —log 1/48 5.58
4%3 2 1716 x 1/2 —log 1/32 5.0
4dx4 1 1716 x 1/1 —log 1/16 4.0
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Experiment
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localhost/~jon/shepard/

Stage 1: Training

15 minutes

You are going to learn a simple language. We will train you on 4 words in the language and we will test how
well you are learning the words. Try to learn the language as well as you can and aim to be accurate in your
answers. You will receive a 2¢ bonus payment for every correct test answer. If you decide to stop the task,
please click the button so that someone else can take part.

@ Look at
the picture

@ Learn
the word

® Click on the word to
confirm you learned it

@ Sometimes you'll see a
picture that you saw before

@ Try to recall
the correct word

What is this

® If correct, you
get a 2¢ bonus
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Stage 2: Test

5 minutes

You have now completed the training stage! Next we will test you on the language that you just learned. For
each picture, try to click on the correct word. You will get a 2¢ bonus payment for every correct answer. It is
therefore possible to earn up to $1.28 in this stage of the task. However, this time we will not tell you if you are
correct or incorrect. You will find out at the end how many you got correct.
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Iterated learning with humans
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Rerun the model with parameters estimated from the experiment
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Conclusions

Languages are shaped in the simplicity—informativeness tradeoff by pressures from
induction and interaction

For a rational learner, induction contains a simplicity bias to prevent overfitting noise, and
to aid reasoning about unseen meanings

lterated learning (repeated induction) converges to the prior bias, favouring languages that
are as simple as possible:

Loss of expressivity: Loss of words/concepts to aid learning
Compact categories: Reorganization of the space to aid learning

In the process, some informativeness may come along for the ride, potentially obscuring
the causal mechanism

Nevertheless, some kind of interactional dynamics (e.g. learning based on communicative
success) must restrain languages from total degeneration






