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for informativeness

newhomo kamone gaku hokako

kapa gakho wuwele nepi

pihino nemone piga kawake

Kirby, Tamariz, Cornish, & Smith (2015)
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Learning + Communication 
exerts pressure for simplicity 

and informativeness

gamenewawu gamenewawa gamenewuwu gamene

mega megawawa megawuwu wulagi

egewawu egewawa egewuwu ege

Kirby, Tamariz, Cornish, & Smith (2015)
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1 category (2/12) 2 categories (1/12) 4 categories (1/12)3 categories (8/12)

Converged-on category systems
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A pressure for informativeness prevents degeneration
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Experiment 1 
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Experiment 2 
Iterated learning with an informativeness pressure

Kirby, Cornish, & Smith (2008)



Continuous, open-ended stimulus space
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• Languages are shaped by competing pressures from induction and interaction

• The human inductive bias is best characterized by a preference for simplicity

• Therefore, iterated learning gives rise to simple, inexpressive category systems 
with simple, compact structure 
Side-note: Compact structure also happens to be a feature of informativeness, obscuring the mechanism

• But! The presence of communicative interaction prevents this process getting out 
of hand by permitting the emergence of higher-level forms of linguistic structure

• The framework developed in the CLE (which, by the way, has many parallels with a body of 

work from Regier and colleagues) is resilient to more realistic assumptions about meaning



Thanks!


