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When the lord, also known as god, realised that adam and eve, although
perfect in every outward aspect, could not utter a word or make even the
most primitive of sounds, hemust have felt annoyedwith himself, for there
was no one else in the garden of eden whom he could blame for this grave
oversight, after all, the other animals, who were, like the two humans, the
product of his divine command, already had a voice of their own, be it
a bellow, a roar, a croak, a chirp, a whistle or a cackle. In an access of
rage, surprising in someone who could have solved any problem simply
by issuing another quick fiat, he rushed over to adam and eve and uncer-
emoniously, no half-measures, stuck his tongue down the throats of first
one and then the other. From the texts which, over the centuries, have
provided a somewhat random record of those remote times, be it of events
that might, at some future date, be awarded canonical status and others
deemed to be the fruit of apocryphal and irredeemably heretical imagina-
tions, it is not at all clear what kind of tongue was being referred to here,
whether the moist, flexible muscle that moves around in the buccal cavity
and occasionally outside it too, or the gift of speech, also known as lan-
guage, that the lord had so regrettably forgotten to give them and about
which we know nothing, since not a trace of it remains, not even a heart
engraved in the bark of a tree, accompanied by some sentimental message,
something along the lines of I love eve.

— José Saramago (2011)
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Summary

This thesis explores how learning a language and using it to communicate affect the

structure and organization of concepts, such as colour, kinship, and spatial relation-

ship categories. The thesis begins by outlining some theoretical perspectives on learn-

ing and communication in relation to language and concepts. These perspectives are

then formalized in a computational model of an idealized language learner, and the pre-

dictions of this model are tested experimentally. The results indicate that the process of

learning is best understood in terms of a cognitive preference for simplicity. Moreover,

when a language is passed on from one generation of learner to the next, this simplic-

ity preference is amplified, causing the language to degenerate in its ability to express

useful conceptual distinctions. However, if the language is also used to communicate

with others, this process of degeneration is halted, and the language instead develops

a special type of structure – compositionality – which allows it to be both simple and

communicatively useful at the same time. The thesis therefore provides insight into the

principal forces that have shaped the structural properties of language.
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Abstract

Languages evolve in response to various pressures, and this thesis adopts the view that

two pressures are especially important. Firstly, the process of learning a language func-

tions as a pressure for greater simplicity due to a domain-general cognitive preference

for simple structure. Secondly, the process of using a language in communicative sce-

narios functions as a pressure for greater informativeness because ultimately languages

are only useful to the extent that they allow their users to express – or indeed repre-

sent – nuanced meaning distinctions. These two fundamental properties of language –

simplicity and informativeness – are often, but not always, in conflict with each other.

In general, a simple language cannot be informative and an informative language can-

not be simple, resulting in the simplicity–informativeness tradeoff. Typological studies

in several domains, including colour, kinship, and spatial relations, have demonstrated

that languages find optimal solutions to this tradeoff – optimal solutions to the problem

of balancing, on the one hand, the need for simplicity, and on the other, the need for

informativeness.

More specifically, the thesis explores how inductive reasoning and communicative

interaction contribute to simple and informative structure respectively, with a partic-

ular emphasis on how a continuous space of meanings, such as the colour spectrum,

may be divided into discrete labelled categories. The thesis first describes information-

theoretic perspectives on learning and communication and highlights the fact that one

of the hallmark feature of conceptual structure – which I term compactness – is not

subject to the simplicity–informativeness tradeoff, since it confers advantages on both

learning and use. This means it is unclear whether compact structure derives from a

learning pressure or from a communicative pressure. To complicate matters further,

some researchers view learning as a pressure for simplicity, as outlined above, while
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others have argued that learning might function as a pressure for informativeness in

the sense that learners might have an a-priori expectation that languages ought to be

informative.

The thesis attempts to resolve this by formalizing these different perspectives in a

model of an idealized Bayesian learner, and this model is used to make specific predic-

tions about how these perspectives will play out during individual concept induction

and also during the evolution of conceptual structure over time. Experimental testing

of these predictions reveals overwhelming support for the simplicity account: Learners

have a preference for simplicity, and over generational time, this preference becomes

amplified, ultimately resulting in maximally simple, but nevertheless compact, concep-

tual structure. This emergent compact structure remains limited, however, because it

only permits the expression of a small number of meaning distinctions – the emergent

systems become degenerate.

This issue is addressed in the second part of the thesis, which compares the out-

comes of three experiments. The first replicates the finding above – compact categorical

structure emerges from learning; the second and third experiments compare artificial

and genuine pressures for expressivity, and they show that it is only in the presence of

a live communicative task that higher level structure – a kind of statistical composi-

tionality – can emerge. Working together, the low-level compact categorical structure,

derived from learning, and the high-level compositional structure, derived from com-

municative interaction, provide a solution to the simplicity–informativeness tradeoff,

expanding on and lending support to various claims in the literature.
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Chapter 1

Introduction

A struggle for life is constantly going on amongst the words and grammat-
ical forms in each language. The better, the shorter, the easier forms are
constantly gaining the upper hand, and they owe their success to their own
inherent virtue.

— Charles Darwin (1871)1

The idea that languages evolve by Darwinian means is an apt starting place for this the-

sis, which is firmly rooted in an evolutionary approach to the language sciences. And

the words ‘better’, ‘shorter’, and ‘easier’ are especially fitting given its main argument –

that languages evolve to become better adapted to the communicative needs of their

users, while also evolving shorter grammars, making them easier to learn. Paraphras-

ing Dobzhansky (1973), it has been remarked that ‘nothing in linguistics makes sense

except in the light of evolution’ (Kirby, 2014). However, perhaps more so than biol-

ogy, the emergence and evolution of language is inherently difficult to study due to its

ephemeral nature as an ever-changing, non-ossifying cultural behaviour.

The most recent wave of scientific research into the evolution of language began

a few decades ago with pioneering work using agent-based computational simulations

(e.g. Brighton, 2002; Hurford, 1989; Kirby, 2002; Nowak & Krakauer, 1999; Oliphant,

1996; Smith, 2004; Steels, 1995). More recently, experimental models have also become

1 In fact, these words are Darwin’s (1871) paraphrase of a few sentences inMüller (1870), whowas reviewing
an English translation by Bikkers (1869) of a German text by Schleicher (1863). It is, of course, highly
satisfying that a quotation about language evolution has itself undergone several generations of selection
and recombination. See Dingemanse (2013) for a brief history of this quote.
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prevalent (e.g. Galantucci, 2005; Garrod, Fay, Lee, Oberlander, &MacLeod, 2007; Little,

Eryılmaz, & de Boer, 2017; Perlman, Dale, & Lupyan, 2015; Scott-Phillips, Kirby, &

Ritchie, 2009; Selten & Warglien, 2007), early precursors to which can be found in the

works of, for example, Bartlett (1932) and Esper (1966).

I believe that the combination of models and experiments, underpinned by strong

theoretical claims, offers the best way to make progress in the field, and herein I at-

tempt to do precisely that. A central premise of this thesis is that simple computational

principles can, at least in part, explain the high-level complexity we observe in human

behaviours and therefore the cultural phenomena that arise from such behaviours. As

such, I believe there are three main entry points to discovering what it means to be

human: computational principles (with a special emphasis on learning), human be-

haviour (with a special emphasis on categorization), and cultural phenomena (with a

special emphasis on language).

The thesis consists of five chapters, three of which (Chapters 1, 3, and 4), are built

around a paper. In this introductory chapter, I briefly review some of the background

on which this thesis rests and provide some high-level definitions of key terms. This

material will then be expanded upon in Chapter 2, which provides a much more rig-

orous theoretical background to support the primary content presented in Chapters 3

and 4.

1.1 Preface to Paper 1

Paper 1 has been accepted for publication in the Encyclopedia of Evolutionary Psycho-

logical Science, which is scheduled for release in 2019. The advance online version

(Carr& Smith, 2016) is reproduced over the subsequent pageswith permission from the

publisher. I wrote the paper, created the figures, and handled the submission process.

Kenny Smith gave advice on the structure of the paper and edited it. The citations may

be looked up on page 7 or in the references list at the end of this volume. In particular,

note that ‘Carr et al. (2016)’ refers to Paper 3 from this thesis, which I will return to in

Chapter 4.
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Modeling Language Transmission

Jon W. Carr and Kenny Smith
School of Philosophy, Psychology and Language
Sciences, University of Edinburgh, Edinburgh,
UK

Definition

Languages adapt as they are transmitted from one
generation to the next. Modeling language trans-
mission in computer simulations and laboratory
experiments shows how this process gives rise to
the structure found in language.

Introduction

Language is a defining characteristic of our spe-
cies, so understanding its evolutionary origins is
central to understanding human evolution. In their
seminal paper, Pinker and Bloom (1990) argued
that the evolution of language is best understood
as the result of conventional Darwinian processes,
just like other complex biological traits. However,
languages themselves also adapt and evolve over
repeated episodes of learning and use, providing
two evolutionary mechanisms that shape lan-
guage: the biological evolution of the human
capacity for language and the cultural evolution
of language itself. This entry outlines the conse-
quences of cultural evolution for language and

gives examples of how modeling language trans-
mission can shed light on how language evolved.

Cultural Evolution and Language

Like many other human behaviors, language is
socially learned and culturally transmitted:
Humans learn the language of their speech com-
munity by observing the linguistic behaviors of
other members of that community. More specifi-
cally, languages are transmitted via iterated learn-
ing: A language is learned by observing the
linguistic behavior of another individual who
learned their language in the same way. That
humans are able to learn language presumably
reflects some cognitive capacity or combination
of capacities that is unique to humans (Hauser
et al. 2002). However, repeated episodes of learn-
ing and use also allow for the cultural evolution of
languages: Linguistic variants that are difficult to
learn, impose substantial processing burdens, or
do not meet the communicative needs of language
users will tend to be replaced by those that are
more learnable, easier to process, or more func-
tional (Christiansen and Chater 2008). This is
because the mistakes that language users make
during learning, and the modifications they make
while communicating, tend to be in favor of more
learnable, more functional forms; poorly adapted
variants will be replaced by superior ones. Cul-
tural evolution thus gives rise to languages that are

# Springer International Publishing AG 2016
T.K. Shackelford, V.A. Weekes-Shackelford (eds.), Encyclopedia of Evolutionary Psychological Science,
DOI 10.1007/978-3-319-16999-6_3353-1

Reprinted with permission from Springer Customer Service Centre GmbH
Encyclopedia of Evolutionary Psychological Science by T. K. Shackelford and
V. A. Weekes-Shackelford (Eds.). © Springer International Publishing AG 2016
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well adapted to being transmitted from one gen-
eration to the next.

Mathematical, computational, and experimen-
tal techniques developed over the past two
decades have made it possible to systematically
investigate how cultural processes shape language
(see Kirby et al. 2014 for a review). This line of
research has demonstrated that some of the fun-
damental properties of language can be explained
as products of cultural evolution, thus highlight-
ing the importance of understanding the role of
culture in explaining language design and
reframing the debate on the biological evolution
of the language faculty (Thompson et al. 2016).
This entry reviews some of this work here, focus-
ing on experimental models of the emergence of
compositional and categorical structure in
language.

Cultural Transmission Gives Rise
to Compositionality

Language is compositional: The meaning of a
complex utterance is a function of the meaning
of its parts and the order in which those parts are
combined. By combining a set of linguistic units
in a particular order (e.g., the dog bit the man), a
language user is able to form a complex meaning
that is systematically related to an utterance that
uses a different set of words (e.g., the cat bit the
man) or that places the words in a different order
(e.g., the man bit the dog). This compositional
structure is central to the expressive power of
language; with knowledge of the linguistic units
and rules of combination, language users are able
produce and understand any complex utterance—
even those that have never been encountered
before.

In the first work of its kind, Kirby et al. (2008)
ran an experiment showing that the property of
compositionality can emerge as a result of lan-
guage transmission, replicating the results of ear-
lier computer models (e.g., Kirby 2002).
Participants had to learn an “alien” language
which consisted of words for colored moving
shapes. After a training phase in which partici-
pants observed the objects together with their

labels, participants were prompted to recall the
labels for those objects. The responses of a given
participant were then taught to a new participant,
whose responses were in turn taught to another
new participant, thus modeling what happens
when languages are transmitted between individ-
uals (Fig. 1a). Each transmission chain was ini-
tialized with an unstructured, non-compositional
language in which every object was associated
with a randomly generated label. After around
ten generations of the iterated learning process,
linguistic systems emerged that exhibited compo-
sitional structure. An example of this result is
shown in Fig. 2a. The initial input language taught
to the first participant in a chain contains no
system-wide structure, but by the ninth genera-
tion, the language had evolved a compositional
system in which the first syllable encodes color,
the second syllable encodes shape, and the final
syllable encodes movement.

Compositionality Depends
on Transmission and Communication

Languages are not merely transmitted from person
to person via learning and recall; they are used for
communication, and the communicative use of
language provides the input to language learning.
This means that language is shaped by two pres-
sures. On the one hand, a language needs to be
expressive—it should allow its users to convey
important distinctions when communicating. On
the other hand, it also needs to be learnable. These
pressures for expressivity and learnability are not
necessarily aligned: Languages that convey many
distinctions are likely to be harder to learn than
languages that encode few distinctions. Indeed,
the easiest language to learn would be one in
which every concept was conveyed by a single,
maximally ambiguous utterance, but such a lan-
guage would be inexpressive. Kirby et al. (2008),
described above, used an artificial proxy for
expressivity: If a participant provided the same
label for two objects, only one of those labels
was passed on to the next learner, thus concealing
evidence that languages could be inexpressive. In
another experiment in the same paper, Kirby

2 Modeling Language Transmission

Reprinted with permission from Springer Customer Service Centre GmbH
Encyclopedia of Evolutionary Psychological Science by T. K. Shackelford and
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Modeling Language Transmission, Fig. 1 Three
models of cultural transmission. (a) shows a simple trans-
mission chain in which a language is passed from one
individual to another. (b) shows a pair of language users

who interact back and forth using a language. (c) shows a
transmission chain with dyadic interaction at each
generation

Modeling Language Transmission, Fig. 2 Results
from three iterated learning experiments. (a) shows results
from experiment 2 from Kirby et al. (2008). The initial
input language lacks systematic structure, but after nine
generations of cultural transmission, the language evolves
a compositional system. (b) shows results from Kirby
et al. (2015). Under the closed-group method, a holistic

language emerges; under the chain method, a composi-
tional language emerges. (c) shows results from Carr
et al. (2016). The initial input language contains no cate-
gories (each color is a different word), but after ten gener-
ations of cultural transmission, the continuous meaning
space is carved up into semantic categories

Modeling Language Transmission 3

Reprinted with permission from Springer Customer Service Centre GmbH
Encyclopedia of Evolutionary Psychological Science by T. K. Shackelford and
V. A. Weekes-Shackelford (Eds.). © Springer International Publishing AG 2016
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et al. (2008) found that removing this artificial
pressure for expressive languages produced a rad-
ically different outcome: Rather than becoming
compositional, the languages are rapidly simpli-
fied, losing words and distinctions at every epi-
sode of transmission.

In a follow-up series of computer models and
experiments, Kirby et al. (2015) explored the
trade-off between these competing pressures,
modeling the expressivity pressure in a more nat-
uralistic way by having participants use the lan-
guage they had learned in a communication game.
In one condition, two speakers had to communi-
cate back and forth about a small set of objects
(Fig. 1b). After interacting for some time, the pair
of language users developed a system in which
each object was described by a unique, idiosyn-
cratic word—communicatively functional but
lacking compositional structure (as shown in
Fig. 2b). This condition was referred to as a closed
group, since unlike Kirby et al. (2008) no new,
naïve participants were introduced. In compari-
son, in the transmission chain condition, two par-
ticipants had to communicate about the same
objects, but the language was then passed on
from one pair of participants to another: The lan-
guage produced during communication by one
pair became the input to learning for the next
pair (Fig. 1c). This combination of cultural trans-
mission to naïve learners (imposing a pressure for
learnability) plus communication (favoring
expressivity) led to languages with compositional
structure (as shown in Fig. 2b). Communication
alone, or learning alone, is not sufficient to drive
the evolution of compositional structure; instead,
compositionality is language’s solution to pres-
sures requiring it to be as simple and as learnable
as possible without sacrificing expressive power.

Cultural Transmission Gives Rise
to Semantic Categories

As described above, languages combine linguistic
units, such as words, according to a compositional
system. These units pick out categories rather
than individual items or actions. For example, in
English, the space of possible drinking vessels is

carved up by a small number of words (e.g.,
bottle, cup, flask, glass, and mug). This categori-
cal structure allows language users to refer to an
infinite range of possible meanings using a man-
ageable, finite number of labeled categories; this,
in combination with compositional structure, is
fundamental to the communicative power of
human languages.

Carr et al. (2016) show how this categorical
structure develops through iterated learning. Pre-
vious experiments (including Kirby et al. 2008,
2015) had participants learn and communicate
about meanings drawn from a small, finite set.
Carr et al. (2016) instead introduced a continuous
and open-ended meaning space. Participants had
to learn words for, and subsequently label, trian-
gles that were randomly generated by selecting
three vertices on a plane, such that there were
effectively infinitely many objects participants
could be faced with. In addition, participants
were always tested on their ability to label entirely
novel triangles, none of which they had seen
during training. After ten generations of iterated
learning using the transmission chain paradigm
(Fig. 1a), category systems emerged in which
this continuous space of possible triangles was
carved up into around four or five categories that
related primarily to their shape and size (as shown
in Fig. 2c). When this experiment was adapted to
include a communication game at each generation
(Fig. 1c), as in Kirby et al. (2015), this combina-
tion of pressures for expressivity and learnability
resulted in emergent languages that exhibited both
categorical and compositional structure, thus
demonstrating that both semantic categories and
compositional structure can arise simultaneously
out of cultural evolutionary processes.

Conclusion

Humans are the only known species with a com-
munication system as complex as language,
which must reflect unique features of our biolog-
ical endowment (and thus our unique evolutionary
history). Biology can provide an explanation for
the basic building blocks required for language,
such as the capacity for vocal learning found in

4 Modeling Language Transmission
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other animals or the capacity and motivation to
reason about the mental states and communicative
intentions of others (Fitch 2010). Nevertheless, it
is clear that cultural processes play a potentially
important role in explaining the structure of
human language. These processes can be studied
in the lab, and a growing number of experiments
that model what happens to languages when they
are transmitted across generations have shown
that at least some of the universal properties of
language can be explained as a product of cultural
evolution. This suggests that biological evolution
should be seen as providing the basis on which
cultural evolution can operate, with the detailed
structural properties of language being a product
of cultural evolution. Modeling language trans-
mission therefore has an important role to play
in helping us understand how language evolved.

Cross-References

▶Communication
▶Communication and Social Cognition
▶Darwin on the Origin of Language
▶Evolution of Culture
▶Language
▶Language Acquisition
▶Language Development
▶Language Instinct, The
▶Language Modularity
▶Language Preadaptations
▶Learning
▶Laryngeal Descent
▶Linguistic Evolution
▶Meaning (Philosophy)
▶Mother Tongue Hypothesis
▶Musical Protolanguage
▶Non-Human Vocal Communication
▶ Pinker’s (1994) the Language Instinct
▶ Social Learning and Social Cognition

▶ Symbolic Culture
▶Transmitted Culture
▶Universal Grammar
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1.2 Summary of Paper 1

Paper 1 contains four key messages that are foundational to this thesis, and it is worth

restating them here. The first is that human biology provides the underpinnings for lan-

guage – language could not happen without whatever unique contribution our biology

provides – but, equally, languages themselves are socially learned, used, and transmit-

ted, and their structure develops in response to these processes. In particular, this thesis

places special emphasis on the process of iterated learning, which we defined as:

Iterated learning: A language is learned by observing the linguistic behaviour of

another individual who learned their language in the same way.

I will have more to say about this momentarily.

The second key message was a statement of the position taken by Kirby, Tamariz,

Cornish, and Smith (2015), who argue that language structure emerges when two op-

posing forces are in play: The pressure from learning, which acts to make languages

more ‘compressible’, and the pressure from communication, which acts to make lan-

guages more ‘expressive’. This is also the view generally adopted in this thesis, although

I tend to prefer slightly different terminology, often using the terms simple rather than

compressible and informative rather than expressive. This change of terminology is pri-

marily motivated by a desire to unify the view from Kirby and colleagues with another

view from Regier and colleagues, which we will come to in the next chapter.

The third keymessage was that the structural properties of language emerge as solu-

tions to these two competing pressures. In particular, Kirby, Cornish, and Smith (2008)

demonstrated that compositional structure – a hallmark property of human language –

can emerge through iterated learning, but only when an ‘artificial expressivity pressure’

is included. Kirby et al. (2015) later demonstrated the same finding using a commu-

nicative task as the expressivity pressure. The reason compositional structure emerges

under these conditions is because it is both simple/compressible (only a comparatively

small number of linguistic units need to be learned) but also informative/expressive

(the units may be combined to express many different meanings). Compositionality

thus satisfies the two pressures.

The fourth keymessage of the paper was that the emergence of compositional struc-

ture is dependent on preexisting semantic categories; the participants must agree on



introduction 9

what these categories are in order to label them according to a compositional system.

In Kirby et al. (2008, 2015), these semantic categories (colours, shapes, etc.) are already

established – participants are already aware of a distinction between say red and blue,

so the task becomes one of mapping compositional units onto these established seman-

tic categories. This is where this thesis comes in. Chapter 3 is concerned with how such

semantic categories are established in the first place or, more specifically, how (iterated)

learning shapes the structure of semantic category systems. Then, Chapter 4 explores

how both semantic categories and compositional structure can emerge together.

1.3 On Iterated Learning

Aside from the emergence of compositionality highlighted by Kirby et al. (2008, 2015),

iterated learning has been studied in a wide variety of domains that relate not just to

language but also to other culturally transmitted behaviours. These domains have in-

cluded: combinatorial structure (del Giudice, 2012; Verhoef, Kirby, & de Boer, 2015),

context (Tinits, Nölle, & Hartmann, 2017; Winters, Kirby, & Smith, 2015), the man-

ual modality (Motamedi, Schouwstra, Smith, Culbertson, & Kirby, under review), mu-

sic (Ravignani, Delgado, & Kirby, 2016), sound symbolism (Johansson, Carr, & Kirby,

in prep.), regularization (Ferdinand, Kirby, & Smith, 2019; Smith & Wonnacott, 2010),

and technological innovation (Caldwell & Millen, 2008); and comparisons have been

made of the effects that iterated learning has in different cultural domains (Tamariz,

Kirby, & Carr, 2016). Iterated learning has also been studied in children (Flaherty &

Kirby, 2008; Kempe, Gauvrit, & Forsyth, 2015; Raviv & Arnon, 2018) and other species

(Claidière, Smith, Kirby, & Fagot, 2014; Fehér, Wang, Saar, Mitra, & Tchernichovski,

2009; Horner, Whiten, Flynn, & de Waal, 2006). For comprehensive reviews, see Scott-

Phillips and Kirby (2010), Kirby, Griffiths, and Smith (2014), and Tamariz (2017). In

brief, however, this body of research has broadly shown that iterated learning results in

simple structures that are well adapted to the inductive biases of their learners. Of par-

ticular relevance to this thesis are studies of the iterated learning of semantic category

systems (conceptual structures), which I return to in Section 2.1.3.

Iterated learning is sometimes thought of as amodel of the historical process of cul-

tural transmission and evolution – languages adapt to maximize their own transmissi-

bility as they are passed from one generation to the next. But a proper understanding
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of iterated learning recognizes the important role that learning plays in shaping the cul-

tural behaviour being transmitted. Iterated learning is not simply a model of how lan-

guages are copied from one generation to the next; the important point is that learning

is intimately involved in the process and that the mechanisms involved in learning are

major contributing factors in moulding the structure of language. Ferdinand’s (2015,

p. 38) notion of inductive evolution is especially insightful in this regard:

Inductive evolution: Thechange over time of entities that replicate via a cognitive

process of reverse engineering.

Every language user successfully acquires the language used in their speech commu-

nity from an incomplete and impoverished dataset; an individual never observes every

possible sentence but is able to produce novel sentences because they have reverse en-

gineered the language’s underlying grammar. This process of acquiring the language is

accomplished by induction, which I define in the following way:

Induction: The inference of a general law from particular instances, supported

by some form of prior knowledge or general heuristics.

I define induction this way to emphasize the fact that particular instances are not always

sufficient to induce a general law that has good predictive power. Rather, the extrac-

tion of a general law from data is supported by ‘prior knowledge or general heuristics’,

which I will refer to as the learner’s cognitive bias or prior bias. In particular, this thesis

emphasizes the idea that a rational learner can maximize the probability of correctly

inferring how a language really works by applying Occam’s razor as a heuristic; simpler

explanations are, ceteris paribus, more likely to be true, a topic that we will return to in

the following chapter. To be clear, I usually use the term ‘induction’ as shorthand for

‘induction supported by a simplicity preference’, but in Chapter 3 we will also consider

a very different preference that learners might bring to the table.

That learners are biased towards simple explanations for the data they are con-

fronted with has important ramifications for inductive evolution. Each naive learner

gently nudges a language in the direction of greater simplicity, which often manifests

itself in the form of greater structure, and when this process is repeated – iterated one

generation after another – the effects of such simplification and restructuring accumu-
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late, providing a potential explanation for why languages have some of the structural

properties that they do.

With this in mind, one of the most important components of the iterated learning

framework is what Brighton (2002) referred to as the transmission bottleneck:

The transmission bottleneck: A limit on how much information is transmitted

from one generation to the next; the amount of data available to the learner from

which to reverse engineer the language.

The bottleneck on transmission can also be thought of as Chomsky’s (1980) poverty of

the stimulus, although the emphasis is on the fact that the impoverished stimulus must

be overcome not once, but generation after generation. One of the key concepts to un-

derstand about iterated learning is that the bottleneck controls how big the gaps are in

the data, and therefore, the extent to which the learner must lean on their cognitive

biases – whatever they might be – to fill those gaps in. Thus, under a tight bottleneck,

where little data passes from one generation to the next, the cognitive biases that the

learner brings to the table are very important in shaping the structure of the emergent

language; in contrast, under a wide or fully open bottleneck, the learner’s biases con-

tribute little to its structure. This point becomes important in Chapter 3.

The bottleneck is, however, not the be-all and end-all. The bottleneck on trans-

mission is one form of intergenerational information loss, which Spike, Stadler, Kirby,

and Smith (2017) argue is an essential requirement in the emergence of structured lan-

guages. Other types of information loss – gaps in the data – that learners must respond

to include a lack of exposure and various types of noise. These three types of informa-

tion loss are formalized in the model presented in Chapter 3, and one of the findings

shown in that chapter is that greater information loss through any of these means leads

to simpler category systems under iterated learning.

1.4 Roadmap

Aside from its evolutionary approach to conceptual structure, this thesis interfaces with

three other major areas of research in the language and cognitive sciences, and the goal

of the following chapter, Chapter 2, is to provide some high-level background on these

topics as they relate to the main content in Chapters 3 and 4:—
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Chapter 2 first takes a brief look at the concepts and categorization literature, since,

for the most part, I treat languages as collections of words/concepts/categories (terms

that I largely treat as synonymous) that have structure in a meaning space à la Roger

Shepard, Eleanor Rosch, and Peter Gärdenfors (among many others). Thus, I often talk

about languages as partitions of a space, although technically, I would draw a distinction

between a partition – the structuring of a meaning space into discrete categories (or

concepts) – and a language – a labelling of such a partition.

Chapter 2 then looks at learning and how learners are able to reconstruct languages

from limited, noisy data. This aspect of my work adopts Bayesian and information-

theoretic approaches to inductive reasoning and emphasizes the role of simplicity as a

fundamental bias that learners bring to the table, adopting ideas from Ray Solomonoff

and Jorma Rissanen (among many others).

Finally, Chapter 2 turns to a relatively new strand of work on informativeness that

is closely associated with Charles Kemp and Terry Regier (among many others). This

work has argued that languages may be described as informative to the extent that they

minimize the loss of information that occurs during communicative interaction; that is,

informative languages minimize how much information is lost when an idea is trans-

ferred from one mind to another through the medium of language.

The thesis attempts to tie these strands of research together under one central claim:

During the cultural evolution of languages and conceptual systems, in-

ductive reasoning acts as a pressure for simplicity, while interactive com-

munication acts as a pressure for informativeness. Combined, these two

principal pressures give rise to languages that find an optimal balance

between simplicity on the one hand and informativeness on the other.

Chapter 3 deals with the simplicity-from-induction part of the claim and Chapter 4

deals with the informativeness-from-interaction part of the claim. Specifically, inChap-

ter 3, I formalize a Bayesian iterated learning model in which agents are instantiated

with one of two prior biases – a bias for simplicity or a bias for informativeness; the

predictions of this model are then tested in two experiments and we find that the bias

for simplicity offers a much better account of human category learning. Then, in Chap-

ter 4, I describe three iterated learning experiments – one with no pressure for infor-

mativeness, one with an artificial pressure, and one with a true pressure from a com-



introduction 13

municative task – and we show that more informative languages only arise when a true

pressure from communicative interaction is present, leading to the emergence of higher

level forms of linguistic structure. Chapter 5 is a short conclusion.





Chapter 2

Categorization, Compression, and

Communication

Theusual goal of communication is, of course, to set up “the same thought”
in the receiver’s brain as is currently taking place in the sender’s brain. The
mode by which such replication is attempted is essentially a drastic com-
pression of the complex symbolic dance occurring in the sender’s brain
into a temporal chain of sounds or a string of visual signs, which are then
absorbed by the receiver’s brain, where, by something like the reverse of
said compression—a process that I will here term “just adding water”—a
new symbolic dance is launched in the second brain. The human brain at
one end drains the water out to produce “powdered food for thought,” and
the one at the other end adds the water back, to produce full-fledged food
for thought.

— Douglas R. Hofstadter (2001)

In this quotation, Hofstadter vividly describes compression as it relates to the transmis-

sion of meaning from one mind to another. Under this view, a language can be thought

of as a lookup table that converts meanings to signals, and also as a reverse lookup table

that converts signals back tomeanings; languages are the intermediaries through which

communication occurs. However, languages are imperfect in this regard because they

are lossy compressors: Once a thought has been compressed into a signal, it can never

be fully reconstituted. Rehydrated food-powder is never as good as the original thing.

We will return to this notion of compression towards the end of this chapter, the goal of

which is to provide background material to the main content presented in Chapters 3

15
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and 4. First, however, I set out a few findings from the concepts and categorization

literature that will become relevant to this thesis later.

2.1 Concepts and Categorization

Because any object or situation experienced by an individual is unlikely to
recur in exactly the same form and context, psychology’s first general law
should, I suggest, be a law of generalization.

— Roger Shepard (1987)

We make sense of the world through a rich system of learned concepts, which allow

us to categorize and make predictions about an infinite range of perceptual stimuli on

the basis of their similarities to previous encounters. For example, although there are

an infinite set of colours (or wavelengths of light), by categorizing them under a finite

set of basic colour terms, we are able to represent, manipulate, and talk about colour

in a useful way. Shepard (1987) referred to such concepts as ‘consequential regions’,

since stimuli that are similar to each other – forming a compact region in the space of

possible stimuli – are likely to have the same consequences for some organism; likewise,

stimuli that have different consequences form separate consequential regions. As such,

concepts tend to reflect the structure of the world, and they arise when the desire to

generalize from one experience to the next conflicts with the simultaneous desire to

distinguish between stimuli that differ in important ways.

2.1.1 Words, concepts, kinds, and categories

In this thesis, I take a very simplified view of language, reducing all its complexity to

spaces that may be carved up into a small number of discrete categories. As a conse-

quence of this dramatic simplification, the distinctions between ‘word’, ‘concept’, ‘kind’,

and ‘category’ become somewhat blurred. Technically, I would draw the following dis-

tinctions: natural kinds exist out there in the world – there is some objective sense in

which a flower is different from a bicycle; concepts, which usually approximate natu-

ral kinds, are the culture- or individual-specific mental representations we use to un-

derstand the world; and words, which symbolize concepts, are signals that particular

languages use to permit communication.
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Figure 2.1: Two-dimensional space discretized into four
convex categories, yielding a Voronoi tessellation of the
space, Each category is indicated by a different colour. The
black dots indicate the ‘seeds’ or prototypes: All meanings
(points) within a given category are closer to their associated
prototype than to any other prototype. As such, the entire
structure of the space can be represented minimally in terms
of just the prototypes.

However, these distinctions break down in places, suggesting that the relationships

between kinds, concepts, and words are more complicated. For example, the words

a language provides affects performance on categorization tasks (e.g. Winawer et al.,

2007), the mere presence of words helps us to make categorical distinctions (e.g. Suf-

fill, Branigan, & Pickering, 2016), and the conceptual distinctions that languages make

are influenced by the structure of the world (e.g. Perfors & Navarro, 2014). In this the-

sis, I treat words, concepts, and kinds as one and the same under the term ‘semantic

category’ (or just ‘category’) because, for the purpose of this thesis, I have no particular

interest in drawing a distinction between them. Essentially, this simplification amounts

to assuming a one-to-one mapping between concept and word.

2.1.2 Convexity and compactness

Gärdenfors (2000) has argued that convexity is a fundamental property of concepts. In-

formally, a region of a metric space (i.e. a concept) is said to be convex if it is possible to

travel in a straight line between any two points in that region without leaving it. More

formally, a category C is said to be convex if, for any two points x and y in C, all points

between x and y are also in C. A system of convex concepts that cover an entire space

is known as a Voronoi tessellation, as depicted in Fig. 2.1. Convexity is especially inter-

esting because it is naturally economical: An entire concept can be defined by a single

point – the prototype; any novel meaning that is encountered can then be classified by

finding the closest prototype. As such, the Voronoi tessellation and convex conceptual

structures arise naturally from the fundamental operations involved in prototype-based

categorization (Rosch, 1973). From this perspective, convex concepts may be consid-

ered equivalent to Shepard’s (1987) ‘consequential regions’.
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Moreover, convexity appears to be a genuine property of at least some semantic do-

mains; Jäger (2010), for example, has shown that the colour concepts documented in

the World Color Survey (Kay, Berlin, Maffi, Merrifield, & Cook, 2009) are highly con-

vex regions of colorimetric space. A question that remains open in the literature is

why concepts tend to adopt such structure, and it seems to me that there are two main

competing theories. First, the perspective from Shepard (1987) and Gärdenfors (2000),

briefly alluded to above, says that convexity derives from the basic cognitive operations

of categorization and generalization. Another example of work from this perspective

comes from Steinert-Threlkeld and Szymanik (under review), who argue that ‘convex-

ity can be explained by accounting for its role in the process of learning’. In his more

recent work, Gärdenfors (2014) has adopted the view that pressure from communica-

tive interactionmight also be a contributing factor, citing computational simulations by

Jäger and van Rooij (2007), who showed that convexity can arise in interaction because

convex structures minimize the distance between intended and inferred meanings.

While convexity is an important concept, I do not take an especially strong position

in this thesis on its status in natural languages and conceptual systems. Instead I adopt

a weaker notion, which I call compactness:

Compactness: Theextent towhich similarmeanings belong to the same semantic

category and dissimilar meanings belong to different semantic categories.

Similar notions already exist in the literature such as ‘family resemblance’ (Rosch &

Mervis, 1975; Tversky, 1977) and ‘well-formedness’ (Regier, Kay, & Khetarpal, 2007);

however, my use of the term ‘compactness’ is deliberately intended to be fluid and in-

formal for the following reasons:

1. I do not want to make any specific claims about or limit myself to the stricter

notion of convexity.

2. I do not want to imply a-priori that compact categories are ‘well-formed’ or ‘bet-

ter’ than other arrangements (though I ultimately argue they are).

3. Compactness is intended to be a graded rather than binary notion.

4. The term retains a sense of similarity/distance but is general enough that I can

apply it to structural features that were arrived at in very different ways.
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Figure 2.2: Illustrative examples of random (top) and convex (bottom) categorization systems in a
one-dimensional, two-dimensional, and three-dimensional space. Each cell represents a meaning –
a point in the space – and each colour represents a category – a set of meanings that are grouped
together as one concept or labelled category. In these examples, the spaces are discretized into four
categories. Under convex systems, the members of a category are tightly packed together, which is
potentially beneficial to both learning and use.

By compactness, I simply mean that the categories in some partition are organized in

such a way that similar (nearby) meanings are generally in the same category, while

dissimilar (far apart) meanings are generally in different categories.

Nevertheless, although I adopt this flexible notion of compactness, partitioning a

space into convex regions is computationally trivial,2 so in the remainder of this chap-

ter I will simulate convex partitions of a space to illustrate various points about the

benefits that compactness confers. I will contrast these convex partitions with random

partitions of the space, as illustrated in Fig. 2.2, and to simplify further, I will quantize

the continuous space onto a grid of some discrete dimensionality.

2 In a discrete space, one simply selects n meanings at random as ‘seeds’ – one seed for each of the target
number of categories – and then classifies each of the remainingmeanings according to the closest seed. In
continuous spaces, a more complex approach is required, such as the Bowyer–Watson algorithm (Bowyer,
1981; Watson, 1981), which is the method I used to generate Fig. 2.1.
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2.1.3 Iterated learning and conceptual structure

Having established a few preliminaries on concepts and categorization and returning to

the iterated learning paradigm introduced in the previous chapter, I will briefly outline

here four studies of the iterated learning of category structure in order to give a flavour

of the previous work that this thesis builds on. We will return to these studies at various

points in the thesis, but for a more complete review of this work, see Contreras Kallens,

Dale, and Smaldino (2018).

J. Xu, Dowman, and Griffiths (2013) conducted one of the earliest examples of an

iterated learning experiment using a continuous meaning space (as opposed to the dis-

crete space adopted in Kirby et al., 2008). In their experiments, participants had to

label a continuous colour space using between two and six colour terms according to

condition. The way in which a participant discretized the space was then taught to a

new participant in a chain. After 13 generations of cultural transmission, the structure

of the space came to resemble the way in which colour space is typically structured by

languages recorded in the World Color Survey (Kay et al., 2009). For example, in the

three-term condition, the emergent systems discretized the space into dark, light, and

red categories.

Perfors and Navarro (2014) used ameaning space of squares that vary continuously

in terms of colour (white to black) and size (small to large). In one condition, there

was an abrupt change in the colour, such that the stimuli could be categorized into two

broad categories (light-coloured squares and dark-coloured squares); while in the other

condition, there was an abrupt change in the size of the squares. Labels for these stimuli

were then passed along a transmission chain of learners. In both conditions, the authors

found that the structure of the emergent languages came to mirror the structure of the

meaning space, primarily making colour or size distinctions according to condition.

Silvey, Kirby, and Smith (2013) produced a continuousmeaning space by randomly

generating four seed polygons and then gradually morphing the polygons into each

other, creating a space of 25 stimuli. The space had no obvious internal boundaries; as

such, participants showed variation in how they discretized it. The authors also con-

ducted an iterated learning experiment using the same meaning space (Silvey, 2014,

Chapter 5); (Silvey, Kirby, & Smith, 2015). In this experiment, each generation con-

sisted of a pair of participants who communicated about the stimuli using a fixed set
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of up to 30 words. Over five generations, the category systems that emerged tended to

make fewer distinctions and became easier to learn. Furthermore, the category struc-

tures became increasingly convex.

Of particular relevance to the next chapter is an iterated learning experiment by

Canini, Griffiths, Vanpaemel, and Kalish (2014). The authors looked at how four dif-

ferent concept structures – varying from easy to hard – are learned in four different

stimulus spaces – varying in the separability of the dimensions (i.e. the extent to which

the dimensions of the space can easily be individuated). Their results replicated awealth

of findings fromdecades of concept learning research, suggesting that the iterated learn-

ing paradigm can be used to reveal human inductive biases – especially the bias for

simplicity. For example, they found that concept structures marking a distinction on

one dimension are easier to learn than those marking distinctions on two dimensions,

especially when the stimuli are separable (replicating findings by e.g. Ashby & Maddox,

1990; Goudbeek, Swingley, & Smits, 2009; Shepard, Hovland, & Jenkins, 1961). They

also found that people can switch between rule-based, prototype-based, and exemplar-

based modes of learning depending on the type of concept structure to be learned (as

argued by e.g. Ashby & Maddox, 2005; Erickson & Kruschke, 2002; Nosofsky, Palmeri,

& Mckinley, 1994).

2.2 Simplicity and Learning

Objectivity is reached when we have squeezed out every last bit of infor-
mation from the data until nothing but random noise remains.

— Jorma Rissanen (1989)

Simplicity is argued to be a fundamental principle of cognition (Chater, Clark, Gold-

smith, & Perfors, 2015; Chater & Vitányi, 2003; Feldman, 2016) that can explain the

kinds of structure we find in languages (Culbertson & Kirby, 2016) and conceptual sys-

tems (Kemp, 2012). The application of a simplicity principle to problems of inductive

reasoning is usually attributed to William of Ockham, whose maxim – Occam’s razor –

states that, ceteris paribus, simple hypotheses should be preferred over complex ones.

Occam’s razor is often contrasted with the Epicurean principle of multiple explana-

tions, which states that all hypotheses consistent with observations should be retained,
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regardless of how complex they are. This section reviews several perspectives on the

simplicity principle and its relationship with learning.

2.2.1 Bayesian inference as a model of learning

Ultimately, a rational learner wishes to gain an accurate understanding of some phe-

nomenon that exists out in the world – accurate enough that the learner is able to use

that understanding to make predictions about how the phenomenon will behave in the

future. In other words, the learner wishes to gain knowledge about a system that has

good predictive power. However, the learner must attempt to induce this knowledge

in the face of incomplete, noisy data. Bayesian inference provides a rational model for

doing exactly this. Given data d, the learner ought to select the hypothesis h that max-

imizes the posterior probability p(h|d), which, by Bayes’ theorem, is given by:

p(h|d) ∝ p(d|h)p(h). (2.1)

In words: The probability that hypothesis h is true (given that we have observed data d)

is proportional to the likelihood of observing d (assuming h were true) multiplied by

the probability of h according to our prior expectations.

According to this formalization, learning (induction) may be viewed as weighing

up two pieces of evidence. The likelihood term, p(d|h), captures how well the data sup-

ports the hypothesis, while the prior term, p(h), captures any prior evidence (innate

knowledge, for example) that the learner brings to the table. This thesis, and in partic-

ular the content of Chapter 3, starts from the following observation:

The rational learner, who has no prior expectations in some particular

domain, should at least apply Occam’s razor because simpler explana-

tions are inherently more probable.

This insight was first rigorously formalized by Solomonoff (1964a, 1964b), who was

seeking a principled way to set the prior in problems of Bayesian induction. As we

shall see later in this section, when coupled with a simplicity-based prior, Bayes’ rule

becomes a mathematical formalization of Occam’s razor and the principle of multiple

explanations: The likelihood retains hypotheses consistent with the data, while the prior

places greater weight on hypotheses that are simple and therefore more likely to be true
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Figure 2.3: Pie charts representing the
probability of four weather conditions in
Edinburgh and Trieste, along with their
corresponding codewords in an optimal
prefix-free code. When the weather is
more predictable, as in Trieste, shorter
codewords may be assigned to frequent
states and longer codewords to infre-
quent states, resulting in shorter average
codeword length (i.e. entropy H).

in the absence of any other information (Li & Vitányi, 2008, p. 347). An ideal model of

such a learner therefore requires some principled way to calculate the a priori simplicity

of a hypothesis. In this thesis, I adopt the view that the extent to which a language

hypothesis is compressible is a practical estimator of its simplicity. To understandwhy, I

will first lay some groundwork and thendescribe the variousways inwhich compression

has been deployed in the field.

2.2.2 Coding and probability: Some preliminaries

Let’s imagine that there are four possible weather conditions – sunny, windy, cloudy,

and rainy – and that we would like to transmit the current weather conditions between

two cities, Edinburgh and Trieste. The communication channel is very costly to use,

and as such we would like to transmit the weather reports in as few bits as possible.

We know in advance that the weather in Edinburgh is very unpredictable: at any given

moment there is a 25% chance that the weathermight be either sunny, windy, cloudy, or

rainy. Therefore, in designing the binary code that we will use to transmit the weather

reports, we opt for a system in which each weather state is represented by a unique

two-bit codeword: 00 for sunny, 01 for windy, 10 for cloudy, and 11 for rainy, as shown

in Fig. 2.3. Therefore, every transmission involves sending 2 bits of information. In

Trieste, by comparison, the weather is more predictable – it tends to be sunny more

frequently, while rain and cloud are less frequent. Therefore, to minimize the cost of

using the communication channel, we opt for a coding system in which sunny weather

is represented by a single bit, say 0, while the other states are represented by two or three

bit codewords, as highlighted in Fig. 2.3. On average, each transmission requires just

1.75 bits, since the one-bit codeword will be used very often (50% of the time), while

each of the three-bit codewords will only be used rarely (12.5% of the time).
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The coding systems we have devised here are no accident; each is optimal for its

respective city. Given that we know the probability with which a state x occurs – for

example, that it is sunny 50% of the time – the shortest possible binary codeword that

may be devised to represent that state has a length of − log p(x) bits.3 This, however,

does not tell uswhat that codeword should be and a coding algorithm, such as Shannon–

Fano, Huffman, or arithmetic coding, must be used to derive a set of codewords that

get close to the Shannon entropy (Shannon, 1948), which is, in fact, a formalization of

the intuition given in the previous paragraph; the entropy of a set of possible states X

is the probability of state x occurring multiplied by the length of an optimal codeword

used to represent that state, summed over all states:

H(X) =
∑
x∈X

p(x) · − log p(x), (2.2)

and it represents a lower bound on the expected length of a codeword transmitted over

the channel. The lower the entropy, the more predictable the system.

Optimal codes may be designed using variable-length, prefix-free codewords, as is

the case in our example above. By prefix-free, we mean that no codeword is a prefix

of any other codeword and, therefore, the state represented by a codeword is entirely

unambiguous, despite the fact that codewords have differing lengths. On reception of

a 0 from the Trieste weather station, we know that the weather must be sunny, but if

we receive a 1, we need to keep listening; if the next bit is a 0 it must be windy, but

if it is a 1, we need to keep listening; the third bit will then allow us to disambiguate

between cloudy and rainy. Although couched in coding theory, prefix-free codes are,

in fact, just a different way of thinking about probabilities; moreover, if we abstract

away from the idea that a code has to be an actual string of binary digits and allow for

noninteger codelengths, we find that codelengths and probabilities are, underlyingly,

the same mathematical construct. If we know the probability of some state, we can

transform that probability into a codelength:

codelength(x) = − log p(x). (2.3)

3 All logarithms in this thesis are to base 2.
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But, equally, if we know the codelength of a state, we can find out its probability:

p(x) = 2−codelength(x). (2.4)

Aswe shall see shortly, thinking about probabilities in terms of codelengths offers useful

insights into rational Bayesian induction, especially in the sense that knowing the most

compressed codeword – or shortest description – of a hypothesis tells us something

about the prior probability of that hypothesis, and therefore the extent to which our

rational, Occam’s-razor applying learner should favour that hypothesis a priori.

2.2.3 Sources of compression in language structure

The compression of data refers to the encoding of that data in such a way that it requires

fewer bits to store or transmit. As we saw in the previous section, knowing the proba-

bility of some state allows us to derive the shortest possible unambiguous codeword for

that state. However, this alone is not compression. Whenwe seek to compress a dataset,

we can also take advantage of the regular patterns and structures that it contains. For

example, if the weather report from Edinburgh at time t is cloudy, then there might be

a greater than 25% probability that it will be raining at time t + 1. Similarly, there may

exist higher levels of structure, such as seasonal trends in weather patterns that might

offer further opportunities for compression. The difficulty for a compressor, then, is

in identifying the structure in some dataset and in deciding which level of structure it

is best to take advantage of. Naturally, compression has been very widely studied in

computer science, leading to various algorithms, such as Lempel–Ziv–Welch (Welch,

1984; Ziv & Lempel, 1978), that seek to find shorter representations of data.

I can think of at least three ways in which compression is often discussed in the

context of language, and at this point it will be useful to enumerate these so that I can

position this thesis in the broader context.

Compression from communication In the quotation from Hofstadter (2001) that

opened this chapter, compression was related to language in terms of how signals are

structured for efficient transmission between interlocutors. In this sense, a language

may be thought of as a tool for compressing a complex meaning into a short signal

that may be rapidly transmitted to a listener, who decompresses the signal on the other
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end. Various strands of research have found, for example, that languages adopt short

strings for frequently used meanings and long strings for infrequently used ones and

that natural languages tend to be close to optimal in this regard (see e.g. Ferrer i Can-

cho& Solé, 2003; Kanwal, Smith, Culbertson, &Kirby, 2017; Piantadosi, Tily, &Gibson,

2011, for various perspectives on this). Broadly, this view posits that principles of effort

minimization in communicative interaction act as sources of compression in language

structure. For the most part, this is not the sense in which I use compression in this

thesis, although the model of communication discussed in Section 2.3.2 does indeed

take for granted that signals are optimized in this way.

Compression from learning I: Cognitive economy The second way in which com-

pression is relevant to language is in terms of cognitive economy or how easy it is to

learn and store a language. From this perspective, compressed language structure de-

rives from the imposition of cognitive constraints during the learning and storage of a

language. For example, in Section 2.1.2, we saw how systems of convex concepts are

naturally very economical, since each concept can be represented by a single point (the

prototype). Gärdenfors’s (2000) motivation for the naturalness of convexity in con-

ceptual structure is rooted in cognitive economy: ‘I believe that [convexity] can be de-

fended by a principle of cognitive economy; handling convex sets puts less strain on

learning, on your memory, and on your processing capacities than working with arbi-

trarily shaped regions’ (p. 70). Indeed, this view has recently been supported by Sims

(2018), who shows how efficient coding of perceptual stimuli gives rise to Shepard’s

(1987) universal law of generalization.

Kemp and Regier’s (2012) work on kinship categorization systems, which will be

discussed in a lot more detail later, also takes the view that categorization systems are

simple (compressible) ‘to the extent that [they] can be concisely mentally represented

and therefore easily learned and remembered’ (p. 1049), suggesting that the authors

view compressible conceptual systems as deriving from issues of cognitive economy in

learning and memory. The idea that compressed structures derive from issues of cog-

nitive economy has also been explored in many other contexts, including, for example,

chunking behaviour (Mathy & Feldman, 2012), language acquisition (Wolff, 1982), and

working memory (Chekaf, Gauvrit, Guida, & Mathy, 2018). Broadly, this view posits

that principles of efficient coding in learning act as sources of compression in language.



categorization, compression, and communication 27

Compression from learning II: Inductive reasoning Finally, and as mentioned in

passing above, compression is relevant to the induction of language – that is to say, it is

relevant when an agent weighs up hypotheses in terms of their fit to the data (the like-

lihood) and the extent to which they satisfy Occam’s razor (which may be represented

in the prior). This is because the compressibility of a candidate language hypothesis is

an estimator of its simplicity. Culbertson and Kirby (2016), for example, have empha-

sized this perspective in the context of language learning, arguing that a domain-general

simplicity principle has domain-specific effects in language structure.

Communication acts as a pressure for compressibility in the sense that short, com-

pressed signals are more efficient to transmit, although this is not the sense adopted in

this thesis. Rather, the view I take herein is that the pressure for compressibility derives

from learning, and, as we have seen, this may be motivated in at least two ways. First,

the process ofmentally encoding the structure of the language will tend to result in sim-

pler languages; from this perspective the brain seeks compressed representations due

to memory or processing constraints. Second, the process of inducing the structure of

a language will also tend to result in simpler languages; from this perspective the brain

seeks compressible explanations because they are, by Occam’s razor, more likely to be

true. I do not take a particularly strong view on which of these – compressed represen-

tations or compressible explanations – is ‘correct’; in fact, it may well be the case that

both contribute to compressibility in language and category structure. That being said,

I tend to prefer the ‘compressible explanations’ idea because, as we shall see, it has been

tightly formalized, and it is not dependent on any particular theory about how the brain

encodes information; even if the brain had infinite processing power and memory, it

would still seek compressible explanations.

In the following section, we will formalize the relationship between compression

and inductive reasoning, and we will see how compression offers a natural extension of

the Bayesian framework introduced at the start of this chapter.

2.2.4 Algorithmic probability and the minimum description length

principle

The length of the shortest computer program that generates a given string is known

as the string’s Kolmogorov complexity. A string that is generated by a short program
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has low complexity, and a string that is generated by a long program has high com-

plexity. Kolmogorov complexity was discovered independently by Chaitin (1969), Kol-

mogorov (1965), and Solomonoff (1964a, 1964b). Solomonoff ’s central insight was to

think of observed phenomena as outputs from programs running on a universal Turing

machine. Given some input (a program), the machine produces some output (a phe-

nomenon). The probability of some phenomenon occurring is therefore the combined

probability of all the programs that produce that phenomenon, all ways in which that

phenomenon could have been generated. Simpler phenomena are generated by more

programs with a shorter length and are therefore a priori more probable events in the

universe. Solomonoff referred to this as the ‘universal prior’ (e.g. Solomonoff, 1997,

p. 83), since the only universal way to compute the prior probability of some hypothe-

sis is to consider the infinite possible ways in which that hypothesis could be justified.

As such, the universal prior, like Kolmogorov complexity in general, is incomputable.

Inspired by Solomonoff ’s work and applying his ideas to concrete problems, Rissa-

nen (1978) formulated the minimum description length (MDL) principle. Essentially,

MDL-based methods fix a description code in which hypotheses can be expressed, and

the universal prior is approximated by the length of that description. The MDL princi-

ple is often used to address a central concern in practical model selection problems: The

selection of an overly complex model that, while fitting the observations well, predicts

future observations poorly. MDL guards against such overfitting by requiring not only

that a model fits the observations well, but also that the model is sufficiently simple,

determined by how compressible that model is.

By Bayes’ theorem (Equation 2.1), we may calculate a posterior probability distri-

bution over some hypothesis space, H, from which an idealized learner is expected to

select the hypothesis, hmax, that has the greatest probability of being true given the data:

hmax = argmax
h∈H

[p(h|d)] = argmax
h∈H

[p(d|h)p(h)]. (2.5)

Treating the probabilities as codelengths yields an equivalent minimization problem:

hmax = argmin
h∈H

[− log p(h|d)] = argmin
h∈H

[− log p(d|h) +− log p(h)], (2.6)
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which may be rewritten in terms of description lengths, DL, as:

hmax = argmin
h∈H

[DL(h|d)] = argmin
h∈H

[DL(d|h) + DL(h)]. (2.7)

This tells us that the most probable hypothesis is one which minimizes the sum of two

codelengths or, in other words, the length of two descriptions: A description of the data

given the hypothesis, DL(d|h), and a description of the hypothesis itself, DL(h).

What we have derived here is theMDL principle (Grünwald, 2007; Rissanen, 1978).

The key insight behind MDL is that treating probability as description provides us with

a concrete way to determine how probable some hypothesis is. For example, imagine

we observe the following 264-bit sequence:

010011100110000101110100011101010111001001100101001000000110100101
110011001000000111000001101100011001010110000101110011001001110110
010000100000011101110110100101110100011010000010000001110011011010
010110110101110000011011000110100101100011011010010111010001111001

The sequence appears random and contains no obvious structure. One hypothesis we

might have is that the generating process hardcodes this sequence verbatim; formulated

as a Python program,4 our hypothesis about the generating process might look like this:

print('01001110011000010111010001110101011100100110010100100000011
010010111001100100000011100000110110001100101011000010111001100100
111011001000010000001110111011010010111010001101000001000000111001
101101001011011010111000001101100011010010110001101101001011101000
1111001')

This description of our hypothesis is quite long, DL(h) = 273 characters, but the de-

scription length of the data given the hypothesis, DL(d|h), would be zero; it would be

unnecessary to describe the data itself because the hypothesis already generates it ex-

actly. Alternatively, we might hypothesize that the generating process is random:

from random import randint
print(''.join([str(randint(0,1)) for _ in range(264)]))

4 Although I formulate hypotheses as Python programs here, note that MDL methods typically fix a much
more restricted code in which data and hypotheses can be represented, an example of which will be de-
scribed in the next section. Of course, the description lengths we compute will depend on our somewhat
arbitrary choice of description code, but that is the price we pay for making the incomputable computable.
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While this hypothesis is comparatively short, DL(h) = 82 characters, it almost certainly

will not generate the observed sequence, so the description length of the data given the

hypothesis, DL(d|h), will have to be quite long to list all the errors the program makes

in reproducing the observed data.5

After some thought, we might hypothesize that the sequence is actually an English

sentence encoded in 8-bit ASCII:

s='Nature is pleased with simplicity'
print(''.join(['{0:b}'.format(ord(c)).zfill(8) for c in s]))

This hypothesis is also quite short, DL(h) = 98 characters, but it fits the data perfectly.

As such, this hypothesis minimizes the sum of DL(h) and DL(d|h), making it the most

probable hypothesis about the process that generated our observed sequence. This cap-

tures the intuition that a good hypothesis is one that predicts the observed data well but

is also concise, making as few assumptions as possible about the true process.

This brings us to the quotation from Rissanen (1989, p. 88) that opened this sec-

tion: ‘objectivity is reached when we have squeezed out every last bit of information

from the data until nothing but random noise remains’. By ‘objectivity’ here, Rissanen

means something like ‘getting as close as possible to the objective truth given the data

available to us’. In the act of compressing some observed data – finding a hypothesis that

optimizes the tradeoff between concision and predictive power – we ‘learn’ something

about the process that generated that data, allowing us to draw a formal equivalence

between learning and compression (Grünwald, 2007, p. 91).

2.2.5 Complexity and concept learning

The classic work on concepts and categorization showed that certain types of concept

are harder to learn than others – that concepts on many dimensions are harder to learn

that concepts on just one, for example (e.g. Shepard et al., 1961). However, this body of

work largely left the why question unanswered – why should one conceptual structure

be harder to learn than another? Feldman’s (2000) answer to this relates concept learn-

ing to compressibility, providing empirical evidence for the ideas described above. In

5 If our hypothesis proposes that the data was generated randomly, then p(d|h) = 1/2264 or, in other words,
codelength(d|h) = − log 1/2264 = 264 bits. Therefore, the hypothesis that we have a random process
will have approximately the same overall description length as the hypothesis that we have a deterministic
process that generates this particular 264-bit sequence.
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Figure 2.4: The stimulus space used in Fass and Feld-
man (2002). The spacecraft vary continuously on two
dimensions: the length of the ‘tube’ and the radius of
the ‘pod’. Participants had to learn to identify enemy
spacecraft, the ones highlighted in yellow, for example.
The complexity of a concept was estimated by its de-
scription length in the rectangle code (see main text and
Fig. 2.5); in this case, the concept can be described using
three rectangle symbols, yielding the binary description
0110110100100000101001 (22 bits).

this work, Feldman (2000) showed that participants’ performance on a range of differ-

ent conceptual structures has a logarithmic relationship with their Boolean complexity;

concepts that have longer logical descriptions are harder to learn and vice versa.

Extending this to continuous concepts, Fass and Feldman (2002) made use of the

MDL principle to formulate a model of concept induction and they compared the pre-

dictions of thismodel to a concept learning experiment. In the experiment, participants

had to learn how to classify ally and enemy spacecraft from a two-dimensional contin-

uous space of spacecraft stimuli; the stimuli consisted of two parts, a tube and a pod,

which varied in size as shown in Fig. 2.4. Participants completed 12 rounds, each of

which tested a particular partition of the space (i.e. a particular conceptual structure).

In each round, a participant played a five-minute game in which they had to destroy

enemy ships and allow ally ships to land. The authors showed that participants’ perfor-

mance on a given partition was correlated with its minimum description length; partic-

ipants performed better on partitions that had a shorter two-part description (i.e. the

description length of the data given the hypothesis plus the description length of the

hypothesis). This, they argue, provides evidence that MDL-based methods offer a good

account of human concept learning.

Fass and Feldman (2002) referred to their description method as the ‘rectangle lan-

guage’, and their method is used extensively in this thesis to measure the complexity of

languages; as such, I refer to their method as the rectangle code to avoid confusion. The

rectangle code consists of a set of rectangle symbols – as shown in Fig. 2.5 – which may

be used to describe arbitrary regions (i.e. concepts) in themeaning space, an example of

which was highlighted in Fig. 2.4. The details of this method are discussed in a lot more

detail in Paper 2 and in Section 3.4. For now, however, it suffices to say that the com-

plexity of a category (a region in the space), and therefore a language or category system
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Figure 2.5: The 100-symbol alphabet used to describe categories in a 4×4 space. For illustrative
purposes, the symbols are shown with binary codewords: Probable symbols (i.e. rectangles) are
assigned short codewords and improbable ones are assigned long codewords.

as a whole, can be estimated according to its shortest description in the rectangle code.

Other complexity measures, based on the same compressibility principles, have also

been reported in the literature, such as the block decomposition method (Zenil, Soler-

Toscano, Delahaye, & Gauvrit, 2015; Zenil, Soler-Toscano, Dingle, & Louis, 2014), and,

of course, techniques from image compression may also provide useful insights, such

as chain code compression (Freeman, 1961).

2.2.6 Hallmarks of simple category systems

If we adopt the rectangle code as a measure of how compressible a language is, what

kinds of language are predicted to be simple? To answer this, I have generated category

systems in an 8×8 space6 by assigning each of the 64 meanings to one of n categories,

where n may vary from 1 to 64. When n = 1, all meanings belong to a single category

6 Note that I have switched here to using an 8×8 version of the rectangle code, not the 4×4 one illustrated in
Fig. 2.5. For the most part, I use a 4×4 space for illustrative examples and an 8×8 space for actual results.
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Figure 2.6: Complexity of languages that have random vs. convex category structure in the rectangle
code. Categories that have a random structure have a long description length and are therefore
complex; categories that have a more compact structure have a comparatively short description
length and are therefore simpler.

(the ‘trivial partition’), and when n = 64, each meaning forms its own distinct category

(the ‘partition of singletons’). The trivial partition and partition of singletons represent

the two extremes, the simplest and most complex systems respectively. In addition, we

will compare two classes of category system – random and convex. In random systems,

themeanings are assigned to categories entirely randomly; in convex systems, the space

is partitioned into n randomly-generated, convex categories. Illustrations of each of

these types of system are shown in Fig. 2.6 for n = 4 categories.

Fig. 2.7 plots the complexity of these two classes of system as a function of n. These

results demonstrate that there are primarily two ways in which a category system may

be considered simple:

1. Category sparsity: The fewer categories there are, the simpler the system is as

a whole; a system that makes few categorical distinctions is simple because less

information is required to draw those distinctions.

2. Compactness: The more compact categories are, the simpler the system is as a

whole; compact categories are simple because groups of clustered meanings may

be described more succinctly in terms of higher level structure.
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Figure 2.7: Complexity of simulated category
systems in an 8×8 space. The pink curve shows
the mean complexity of 100 randomly generated
category systems as a function of the number of
categories. The more categories a system has,
the more complex it is. The blue curve shows
equivalent results for convex category systems.
Systems that consist of compact categories, such
as the convex categories generated here, are
much simpler than unstructured systems. This
gives rise to a compactness advantage, illustrated
by the black arrow: For a given number of cate-
gories (e.g. 16), a compact system is simpler than
a random system.

Systems that consist of few categories are simpler than those that consist of many, and,

for a given number of categories, systems that consist of compact categories are sim-

pler than those that consist of noncompact categories. This gives rise to a compactness

advantage, illustrated in Fig. 2.7 by the black arrow, an advantage that we will return to

later in the chapter.

In this section, we have seen how language learners are expected to seek the sim-

plest explanation of the observed data. In iterated learning, the effects of this bias for

simplicity are amplified. Each new language learner – faced with the task of inducing

a probable hypothesis from an impoverished dataset – moves the language a little bit

closer to their prior bias, such that in the limit, iterated learning converges on a distri-

bution of languages that reflects whatever that prior bias might be (Griffiths & Kalish,

2007). This is interesting for two reasons. Firstly, from a theoretical perspective, it sug-

gests that learning – specifically, induction under a simplicity bias – will have a simpli-

fying effect on a language in the long term, providing an explanation for why languages

tend to possess simple, regular, compressible patterns (this is the perspective taken by

e.g. Kirby et al., 2015, see Chapter 1). Secondly, from a methodological perspective, the

iterated learning paradigm offers a useful means for revealing what language learners’

inductive biases actually are (this is the perspective taken by e.g. Canini et al., 2014,

see Section 2.1.3). We will now put simplicity to one side to consider a rather different

aspect of language: its use in communicative scenarios.
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2.3 Informativeness and Communication

The fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another point.

— Claude Shannon (1948)

Shannon and Weaver (1949, p. 4) set out three levels at which information may be lost

in the process of communication:

A. How accurately can the symbols of communication be transmitted? (The tech-

nical problem)

B. How precisely do the transmitted symbols convey the desired meaning? (The

semantic problem)

C. How effectively does the received meaning affect conduct in the desired way?

(The effectiveness problem)

This thesis largely abstracts away from Level A, which involves issues of noisy channels,

error-correcting codes, redundancy, and so forth (for some perspectives on this see e.g.

Plotkin & Nowak, 2000; Winter & Wedel, 2016). Instead, the notions of informative-

ness and communication discussed in this section exist firmly at Level B: Languages

are informative to the extent that meaning is conveyed with high precision during the

communicative process. Later in this section, we will see how this notion of informa-

tiveness may be formalized as communicative cost, a measure of how much information

is lost, on average, when the listener tries to reconstruct the speakers intended meaning

through the medium of some particular language.

Whereas the problem at Level B is about ensuring the listener acquires the same

meaning as the speaker, the problem at Level C is concerned with what the listener

does with that information in a given communicative scenario. In general, I refer to

this distinct notion as communicative accuracy – the extent to which the speaker’s de-

sired result actually occurs following the communication of some thought. Put another

way, the informativeness of a language is measured by its communicative cost and lan-

guagesmay be costly to use or noncostly to use depending on the particular set of design

choices they follow. This issue of informativeness exists at Level B. In contrast, Level C
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is concerned with the outcome of a particular communicative interaction, in which a

pair of interlocutorsmay be successful or unsuccessful (or indeed successful to a certain

degree) depending not only the particular language they happen to be using, but also

the contextual knowledge that speaker and listener bring to the table and other such

external factors.7 Of course, success at each level is in part determined by success at

the level below. The accurate transmission of signals (Level A) contributes to how pre-

cisely meaning is recovered by the listener (Level B), which in turn contributes to the

probability of a successful outcome (Level C).

In the remainder of this section, we will first look at some examples of how lan-

guages have been studied in terms of informativeness, and we will then turn our atten-

tion to the more technical issue of communicative cost. I then describe the hallmark

features of informative category systems and contrast them with the hallmark features

of simplicity that we identified at the end of the last section.

2.3.1 Informativeness in typological datasets

In the first work of its kind, Kemp and Regier (2012) conducted a study of kinship

terms using a large dataset originally collected by Murdock (1970). In this work, the

simplicity of a kinship system was measured following the same principles described in

Section 2.2: A kinship system is simple to the extent that it has a short description in

a code for representing family members. In English, for example, the concept mother

is defined by the logical expression mother(x, y) ↔ parent(x, y) ∧ female(x); x is a

mother to y if x is a parent to y and x is female. This measure of simplicity was then

paired with their measure of informativeness, communicative cost, which is explained

in detail shortly, and they showed that, of the approximately 1055 kinship systems that

could exist (i.e. possible partitions of a family tree), only a tiny fraction were attested in

natural languages. More importantly, they showed that natural languages exist at what

they call the ‘optimal frontier’ of simplicity and informativeness: Kinship systems are

both maximally simple and maximally informative (see Fig. 2.8 for an illustration).

Kinship terms are generally discrete; an individual may be a son or a daughter with-

7 I take care to point this distinction out because there are points in the thesis, especially, in Chapter 3,
where it may not be immediately obvious which level is being discussed, since communicative cost may
be formulated with a distance metric, but equally communicative accuracy may be quantified in terms of
distance between intended and inferred meanings.
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Figure 2.8: Each point represents a possible lan-
guage in simplicity–informativeness space. The op-
timal frontier represents the best tradeoff that may
be achieved between the two properties. Typolog-
ical studies in various domains show that real lan-
guages cluster around the optimal frontier (black
dots), suggesting that languages are adapted to be
optimally simple and optimally informative.

out gradations in between. Other domains, however, are naturally more continuous,

and Regier and colleagues have extended their methods to such domains. One example

of this is an analysis of colour terms by Regier, Kemp, and Kay (2015, Case Study 1),

building on work by Regier et al. (2007) and using data from the World Color Survey

(Kay et al., 2009). Regier et al. (2015) extended their notion of communicative cost to

continuous spaces by integrating a measure of perceptual similarity. Like the kinship

study described above, they compared naturally-occurring partitions of colour space to

possible partitions that hypothetically could exist, and they showed that extant colour

systems are more informative than would be expected by chance.

To give one final example, Y. Xu, Regier, and Malt (2016) were interested in the

idea that historical processes of word derivation (such as analogy and metaphor) result

in languages that are nonoptimally informative because, over historical time, a word

will come to describe a wide variety of referents that are not necessarily similar to each

other. They refer to this as historical semantic chaining. For example, the word port,

originally meaning gateway or opening, was later extended to physical computer inputs

and then to virtual channels used in networking. Thus, the word port could be consid-

ered uninformative because – pragmatics aside – it does not carry information about

which particular meaning is meant. They tested this with words for household contain-

ers in three languages (using data from Malt, Sloman, Gennari, Shi, & Wang, 1999) and

found that, although the words were consistent with semantic chaining, the languages

were nevertheless more informative than would be expected by chance.

The authors, Regier in particular, have taken the same general approach in a variety
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of other domains, including numeral systems (Y. Xu & Regier, 2014) and spatial rela-

tionship terms (Khetarpal, Neveu, Majid, Michael, & Regier, 2013), studies that have

yielded the same basic result: In large, cross-linguistic datasets, natural languages are

both optimally simple and optimally informative. This is, of course, strikingly similar to

the position articulated by Kirby et al. (2015) that we saw back in Chapter 1, although

Kirby et al. (2015) have, in addition, put forward two pressures that gave rise to this

state of affairs (learning and communication), while Regier and colleagues have tended

to steer clear of positing particular mechanisms. Later, in Section 2.4, I reflect on how

these two bodies of literature – coming at the issue from somewhat different directions –

relate to each other. First, however, we turn our attention to communicative cost.

2.3.2 Communicative cost

This section describes Regier and colleagues’ information-theoretic measure of infor-

mativeness, communicative cost, which plays a crucial role in Chapter 3. Here I pro-

vide a fairly detailed description of the measure from a coding perspective, expanding

on Regier and colleagues’ standard description with the goal of making Chapter 3 more

accessible. We will also see how the definition of communicative cost yields various

predictions about the features we would expect to find in informative languages.

The central idea behind communicative cost is that languages may be described as

informative to the extent that, during communicative interaction, they minimize in-

formation loss. Communicative interaction inherently involves a loss of information

because, while the speaker may be certain about the meaning to be expressed, the lis-

tener only has access to a word that describes a general category of meanings. There are

two main formalizations of communicative cost, which are adopted according to the

particular semantic domain being modelled. I begin by describing the simple discrete

case and then move on to the continuous case.

Discrete categories In Kemp and Regier’s (2012) study of kinship terms (described

above), the discrete form of communicative cost is adopted. Here I give an example

where a simple language divides nine possible drinking vessels into two categories, cups

and mugs. A communicative interaction is illustrated in Fig. 2.9. There is a universe

of meanings U, and the speaker and listener have a shared language L that partitions
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Figure 2.9: A speaker wishes to communicate a target meaning t from a universe of meanings U.
She determines which category the target belongs to according to the shared language L, which
partitions U into categories, and utters its associated word. The listener maps this word back to a
category of possible meanings and must decide on a specific meaning to infer. Here the listener has
a 1/4 chance of correctly inferring the target, since there are four members of the mug category.

U into categories: L = {Ccup,Cmug}. The speaker wishes to communicate a target

meaning t ∈ U, so she determines which category the target belongs to, for example

Cmug, and transmits its associated word to the listener. The listener maps the word back

to the category and selects ameaning t′ ∈ Cmug. The interaction is considered successful

if t = t′. In general, the probability that the speaker will successfully communicate

some meaning m using signal s as an intermediary is 1/|Cs(m)|; as the cardinality of

the category grows, the probability of success decreases because the listener becomes

less certain about the speaker’s intended meaning. The loss of information, or cost,

incurred by using a signal as a proxy for a meaning is therefore − log 1/|Cs(m)| bits;

put differently, the cost is how much additional information the speaker must still send

(e.g. additional modifiers) for the listener to pick out the intended meaning.

The cost of sending a meaning is modulated by the probability of that meaning

occurring p(m), which Regier and colleagues refer to as the ‘need probability’. Thus,

the expected cost of a language as a whole is given by

cost(L) =
∑
m∈U

p(m) · − log
1

|Csignal(m)|
. (2.8)

For each meaning in the universe, we multiply the probability of that meaning occur-

ring by how much information is lost when a category/signal is used as a proxy for that
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Table 2.1: Optimal lossless codewords and lossy signals used to represent 64 meanings

Meaning Lossless Category Lossy
codeword signal

m1 000000 C1 00
m2 000001 C1 00
m3 000010 C1 00
m4 000011 C1 00
m5 000100 C1 00
m6 000101 C1 00
m7 000110 C1 00
m8 000111 C1 00
m9 001000 C1 00
m10 001001 C1 00
m11 001010 C1 00
m12 001011 C1 00
m13 001100 C1 00
m14 001101 C1 00
m15 001110 C1 00
m16 001111 C1 00
m17 010000 C2 01
m18 010001 C2 01
m19 010010 C2 01
m20 010011 C2 01
m21 010100 C2 01
m22 010101 C2 01
m23 010110 C2 01
m24 010111 C2 01
m25 011000 C2 01
m26 011001 C2 01
m27 011010 C2 01
m28 011011 C2 01
m29 011100 C2 01
m30 011101 C2 01
m31 011110 C2 01
m32 011111 C2 01

Meaning Lossless Category Lossy
codeword signal

m33 100000 C3 10
m34 100001 C3 10
m35 100010 C3 10
m36 100011 C3 10
m37 100100 C3 10
m38 100101 C3 10
m39 100110 C3 10
m40 100111 C3 10
m41 101000 C3 10
m42 101001 C3 10
m43 101010 C3 10
m44 101011 C3 10
m45 101100 C3 10
m46 101101 C3 10
m47 101110 C3 10
m48 101111 C3 10
m49 110000 C4 11
m50 110001 C4 11
m51 110010 C4 11
m52 110011 C4 11
m53 110100 C4 11
m54 110101 C4 11
m55 110110 C4 11
m56 110111 C4 11
m57 111000 C4 11
m58 111001 C4 11
m59 111010 C4 11
m60 111011 C4 11
m61 111100 C4 11
m62 111101 C4 11
m63 111110 C4 11
m64 111111 C4 11

meaning. This definition of communicative cost has a natural interpretation in infor-

mation theory: It is the expected number of additional bits required to unambiguously

encode a meaning beyond the number of bits that were actually transmitted. An exam-

ple is illustrated in Table 2.1: A universe consists of 64 equally probable meanings, such

that the lossless codeword for each meaning would optimally require log 64 = 6 bits,

but the language divides the meanings into four equally-sized categories, such that the

signal used to represent each category requires just log 4 = 2 bits (00, 01, 10, or 11).

Thus, in this example, the communicative cost would be 6− 2 = 4 bits, since on every

attempt to communicate, four bits of information is lost. Another way to think about

this is that the lossy signal uttered by the speaker only consists of the first two digits

of the ideal lossless codeword. In essence, then, communicative cost quantifies the av-

erage amount of information that will be lost under a lossy – as opposed to lossless –
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Figure 2.10: A speaker wishes to communicate a target meaning t from a universe of meanings. She
determines which category the target belongs to according to the shared language L, which partitions
the universe into categories, and utters its associated word. The listener maps this word back to a
category of possible meanings and must decide on a specific meaning to infer. He is more likely to
infer prototypical (central) members of the category.

coding system, and is therefore a kind of negative Kullback–Leibler divergence.8

Continuous categories The definition of communicative cost above assumes that, on

hearing a word, the listener is equally likely to infer each member of the associated cat-

egory. As such, it is only sensitive to how many categories are available and the extent

to which category sizes reflect the need probabilities. While this may be appropriate in

cases where categories are discrete – Kemp and Regier’s (2012) study of kinship terms,

for example – it is overly-simplistic in others because it fails to model two well-known

effects of human categorization: Categories may have fuzzy boundaries, and some cat-

egory members may be more prototypical than others. Therefore, in work with con-

tinuous meanings (such as the colour term study in Regier et al., 2015), the following

extended notion of communicative cost is used, in which the probability of successfully

transmitting a meaning from one mind to another is not simply 1/|C| but a value re-

lated to the distance between intended and inferred meanings. An example of this is

illustrated in Fig. 2.10.

8 The Kullback–Leibler divergence, DKL(P||Q) =
∑

i P(i) log P(i)/Q(i), quantifies the expected informa-
tion loss when a lossless code optimized for probability distribution Q is used to encode samples from
P rather than using a lossless code optimized for P. This coding interpretation of the Kullback–Leibler
divergence is similar to communicative cost, except communicative cost compares a lossless code against
a lossy code for the same distribution, resulting in a negative divergence.
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Figure 2.11: A one-dimensional space of 64meanings is broken up into four equally sized categories.
Each probability distribution (indicated in different colours) represents the probability that a listener
would infer a given meaning on hearing the word for a given category. The listener is more likely to
infer meanings at the centre of the category because they are more prototypical. Each plot shows
these probability distributions under different settings of γ. When γ is small, category boundaries are
very fuzzy; when γ is large, the distributions collapse to the discrete case.

Rather than treat each category C as a set of meanings, each category will now be

treated as a probability distribution over all m ∈ U. To transform a set C into a distri-

bution C̃, we assume that the probability of inferring a meaning is proportional to its

total similarity to all category members m′ ∈ C:

C̃(m) ∝
∑
m′∈C

exp−γd(m,m′)2, (2.9)

where γ > 0 and d(·, ·) gives the distance between meaning m and meaning m′. The

term exp−γd(m,m′)2 relates distance to perceived similarity: The similarity between

a meaning and itself is 1; as the distance between two meanings grows, the similarity

approaches 0. The parameter γ controls how quickly similarity decays with distance.

The effect of this parameter is illustrated in Fig. 2.11. Essentially, small values model

fuzzier category systems in which the boundaries between categories are blurred; as γ

becomes arbitrarily large, C̃(m) = 1/|C| if m ∈ C and 0 otherwise, collapsing to the

discrete case described above.

The transformation performed by Equation 2.9 models the categories as Gaussians

inwhich themost prototypicalmeaning (themeaning at the geometric centre of the cat-

egorywith the greatest similarity to other categorymembers) has the highest probability

of being inferred. Since C̃(m) gives the probability that the listener will infermeaningm
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on hearing the signal for category C̃, the cost of sending that meaning is − log C̃(m).

Therefore, the communicative cost of the language as a whole is given by

cost(L) :=
∑
m∈U

p(m) · − log C̃signal(m)(m). (2.10)

2.3.3 Hallmarks of informative category systems

According to communicative cost, the extent to which a language or category system

may be described as informative is determined by four basic properties. In the discrete

case, the following two properties hold:

1. Expressivity: Themore categories a systemhas, the lower its communicative cost;

a systemofmany categories is informative because the categories pick out smaller,

more precise sets of meanings.

2. Balanced cardinality: Themore evenly-balanced the category sizes are, the lower

the communicative cost of the system as a whole.

In the continuous case, the following property also applies:

3. Compactness: The more compact categories are, the lower the communicative

cost of the system; compact categories are informative because theyminimize the

distance between intended and inferred meanings.

This property arises directly out of the assumptions encoded into Equation 2.9. By as-

suming that categories are nonuniform – that some meanings are better examples of a

category than others – communicative cost builds in a preference for compactness; it

pays for a category to be compact because if a listener is more likely to guess more pro-

totypical meanings in response to hearing the word for a given category, then arranging

the category such that category members are generally close to the prototypical mean-

ing maximizes the chance that speaker and listener will infer the same meaning. This

is a convoluted way of saying that an informative category system is one in which the

speaker’s intended meaning and the listener’s inferred meaning are, on average, as sim-

ilar as possible. However, communicative cost is not formulated directly in this way;

rather, Regier and colleagues typically describe it in terms of the loss of information
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between two distributions or representations – the speaker’s representation of the tar-

get meaning and the listener’s representation of what that meaning might be based on

the word they have received. But since the listener’s representation of a category is es-

timated from similarity-based assumptions about prototypicality, communicative cost

builds in the compactness property.9

Finally, if the need probabilities are nonuniform, the properties above may be over-

ridden in favour of smaller categories for frequent meanings and larger categories for

infrequent meanings (see e.g. Gibson et al., 2017; Regier, Carstensen, & Kemp, 2016).

This leads to a fourth property of informativeness:

4. Reflection of need: When categories reflect the needs of the interlocutors, the

communicative cost of the system is lowered.

Of course, these four hallmark features of informativeness are correlated in various

ways. For example, in a system that has more categories, those categories will auto-

matically be more compact, and in a system where compactness is maximized, the car-

dinality of categories will tend to be balanced. However, the important point I want to

emphasize here is that communicative cost – a measure of informativeness – is deter-

mined by various underlying factors.

For the purpose of this thesis, I will focus only on the expressivity and compact-

ness properties. To demonstrate that these properties are considered informative under

communicative cost, we can reconsider the random and convex category systems that

were simulated in Section 2.2.6 (page 32; see also Fig. 2.2 on page 19). Fig. 2.12 plots the

communicative cost of these systems as a function of n under both the discrete measure

(left) and the continuous measure (right). In either case, the more categories a system

has, the more informative it is (the lower its communicative cost); greater expressiv-

ity makes a language more informative. Secondly, for a given number of categories,

convex systems (blue) are more informative than random systems (pink), but only un-

der the continuous form of communicative cost, as highlighted by the black arrow in

Fig. 2.12. In other words, the same compactness advantage that we observed in terms

of simplicity (see page 33) also exists in terms of informativeness.

9 It is unclear whether this was intended by Regier and colleagues; their work typically describes Equa-
tion 2.9 as providing a Gaussian model of a category (e.g. Regier et al., 2015, p. 244) and does not appear
to recognize that this also builds in a compactness advantage. Nevertheless, I would contend that a good
measure of informativeness should indeed value compactness in this way.
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Figure 2.12: Informativeness of simulated category systems in an 8×8 space under the discrete
measure of communicative cost (left) and the continuous measure (right). The pink curves show the
mean communicative cost of randomly generated category systems as a function of the number of
categories. The more categories a system has, the less costly it is to use. The blue curves show
equivalent results for convex category systems. Systems that consist of compact categories are less
costly than unstructured systems, but only when the continuous measure (right) is adopted; under
the discrete measure, there is no such compactness advantage.

2.4 The Simplicity–Informativeness Tradeoff

The task of category systems is to provide maximum information with the
least cognitive effort.

— Eleanor Rosch (1978)

The body of research reviewed above hints at two converging literatures. Regier and

colleagues focus on the typological distribution of languages – showing that real lan-

guages are optimally simple and informative – but they abstract away from the mecha-

nistic details (Levinson, 2012, p. 989). Meanwhile, Kirby and colleagues attempt to be

more explicit about how cognitive principles and cultural dynamics are linked to the

design features of language; in other words, they attempt to solve what Kirby (1999)

called ‘the problem of linkage’. These two bodies of work are complementary and – as

we have seen – have arrived at similar conclusions, conclusions that are succinctly sum-

marized by the quotation from Rosch above. The job of a category system is to permit

informative communication in the simplest possible way, and this gives rise to what I

call the simplicity–informativeness tradeoff :
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Figure 2.13: Complexity and communicative cost
of random (pink) and convex (blue) category sys-
tems that have between 1 and 64 categories;
the darker the colour, the more categories the
system has. This plot combines the results
shown in Fig. 2.7 and Fig. 2.12. Together, the
points delimit the space of possible languages
in simplicity–informativeness space. The tradeoff
between simplicity and informativeness results in
a downward sloping relationship between com-
plexity and cost; complex languages are infor-
mative and simple languages are uninformative.
Convexity (a form of compactness) is both simple
and informative, so convex systems lie along the
optimal frontier.

The simplicity–informativeness tradeoff: Successful languages are both simple

and informative, but, with some caveats, simple languages cannot be informative,

and informative languages cannot be simple, giving rise to a tradeoff.

The main caveat is, of course, that the compactness advantage applies to both simplicity

(see page 33) and informativeness (see page 43), and since compact structure is both

simple and informative, it is not subject to the simplicity–informativeness tradeoff, a

point that becomes important in the next chapter.

Combining the simulation results from the previous two sections (refer back to

Figs. 2.7 and 2.12) gives us a concrete picture of the tradeoff, as shown in Fig. 2.13, which

depicts the results within Kemp and Regier’s (2012, p. 1052) simplicity–informativeness

space.10 The downward sloping relationship between complexity and cost results from

the fact that simple category systems are generally not informative and informative cat-

egory systems are generally not simple. However, note that the convex systems in blue,

which have a compact structure and are therefore favoured by both learning and com-

munication, lie along the optimal frontier.

Returning to Kirby et al. (2015), who posit that learning acts as the pressure for sim-

plicity and communicative interaction acts as the pressure for informativeness, yields

a view of the evolution of conceptual systems that is illustrated in Fig. 2.14: When

there is only a pressure from induction, languages become simple, moving westwards in

simplicity–informativeness space; when there is only a pressure from interaction, lan-

10 See also Kemp, Xu, and Regier (2018) who similarly describe movements in this space.
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Figure 2.14: Illustration of how pressures from induction and interaction are expected to act in
simplicity–informativeness space. When there is only a pressure from induction, languages become
simple; when there is only a pressure from interaction, languages become informative; when both
pressures are in play, the languages adapt to become both simple and informative, clustering around
the optimal frontier.

guages become informative, moving south in simplicity–informativeness space; when

both pressures are in play, the languages adapt to become both simple and informative,

clustering around the optimal frontier. Systems at the optimal frontier ought to have

a compact structure, since compactness is favoured by both pressures, but they will

find some tradeoff in terms of expressivity; too few categories, and the language is not

informative enough, but too many categories and the language is not simple enough.

2.5 Conclusion to Chapter 2

In this chapter I have introduced three broad areas of research that are relevant to this

thesis. First, in Section 2.1, we reviewed a few key ideas in the concepts and categoriza-

tion literature. In Section 2.2, we formalized a model of learning in terms of Bayesian

induction under a prior bias for simplicity. By applying a simplicity principle to the

problem of inducing a grammar from incomplete, noisy data, the rational learner is

able to maximize the probability of correctly inferring how the world truly works. This

formalization is put to the test in the next chapter. In Section 2.3, we reviewed a re-

cent body of work from Regier and colleagues, which has convincingly demonstrated

in a variety of domains that natural languages appear to be well optimized in terms

of both simplicity and informativeness. Furthermore, this body of literature provides

an information-theoretic formalization of informativeness, called communicative cost.
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Figure 2.15: The basic paradigms promoted by Kirby and colleagues and Regier and colleagues.
Kirby and colleagues talk about a tradeoff between compressible and expressive languages deriving
from learning and communication; there is a special emphasis on (iterated) learning which is formal-
ized in terms of information-theoretic complexity, while expressivity is approximated by the number of
words. Regier and colleagues talk about a tradeoff between simple and informative communication
systems, which maps fairly neatly onto the view from Kirby and colleagues. There is a special empha-
sis on informativeness, which is formalized as communicative cost, while simplicity is approximated
as the number of words. This thesis attempts to unify these two paradigms.

This formalization is especially useful because it fills a gap that has existed thus far in

the iterated learning literature – a more formal account of expressivity. In this thesis I

adopt a combination of the two paradigms, as highlighted in Fig. 2.15. Finally, in Sec-

tion 2.4, we saw how the tradeoff between learning and interaction are expected to play

out in terms of conceptual structure and that compactness has special status under the

tradeoff because it is a feature of both simplicity and informativeness.
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Simplicity from Induction

Weare to admit nomore cauſes of natural things, than ſuch as are both true
and ſufficient to explain their appearances. To this purpoſe the philoſo-
phers ſay, that Nature do’s nothing in vain, and more is in vain, when leſs
will ſerve; For Nature is pleas’d with ſimplicity, and affects not the pomp of
ſuperfluous cauſes.

— Isaac Newton (1729)

Newton’s first rule of reasoning is an expression ofOccam’s razor: All things being equal,

simpler explanations should be preferred over more complex ones because ‘Nature do’s

nothing in vain’. This is an especially apt place to begin this chapter because we will

apply Occam’s razor on two levels. Firstly, we will instantiate Bayesian agents with an

Occam’s razor prior – confronted with noisy, incomplete data these agents look for

simple hypotheses to explain that data. But secondly, the argument itself also appeals

to Occam’s razor by contending that a simplicity preference offers a more parsimonious

explanation of compact conceptual structure than a reasonable alternative that has been

put forward in the literature.

In a commentary on Kemp and Regier (2012), the study of kinship systems that we

looked at the previous chapter, Levinson (2012, p. 989) pointed out that, although their

findings demonstrate that real languages are optimized in terms of both simplicity and

informativeness, the work does not provide an explanation for ‘where our categories

come from’. In other words, the typological studies on the simplicity–informativeness

tradeoff that we reviewed in Section 2.3.1 describe how languages are, but they do not

offer explanations for why languages should be that way. Levinson (2012, p. 989) went

49
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on to suggest a few ways in which this issue could be tackled, including through ex-

perimental approaches that ‘show how categories get honed through iterated learning

across simulated generations’.

In direct response to this comment, Carstensen, Xu, Smith, and Regier (2015) con-

ducted two studies of the iterated learning of category structures, and these studies

have – in our view – yielded a surprising result: The authors found that informative

category systems can arise through iterated learning without any communicative pres-

sure. I describe this as surprising for two reasons. Firstly, the result runs contrary to

the literature reviewed in the previous two chapters, which argue that learning – and

therefore iterated learning – have a simplifying effect on language. Intuitively, and as

demonstrated in Section 2.4, one would expect to find that informative languages have

greater complexity, so at first glance it is unclear why iterated learning would yield in-

formative category structures. Secondly, the result also appears to contradict Regier

and colleagues’ own approach to informativeness, which is very much construed in

communicative terms. Communicative cost, for example, is a measure of how much

information is lost during communicative interaction, so, at first glance, it is unclear

why the authors would take the position that an increase in informativeness (a decrease

in communicative cost) would occur through pressure from learning.

Carstensen et al.’s (2015) position appears to be that learners expect languages to

be informative and are therefore equipped with a bias for informative languages; the

effects of this bias are then amplified by the process of iterated learning. This is certainly

not an unreasonable claim, and similar ideas can be found in Fedzechkina, Jaeger, and

Newport (2012) and Frank andGoodman (2014). Paper 2, which is themain content of

this chapter, is a direct response to Carstensen et al. (2015). In the paper, we formalize

two positions about the content of the human inductive bias in terms of two possible

priors: a prior for simplicity or a prior for informativeness. We then test the predictions

of these formalizations experimentally.

3.1 Preface to Paper 2

Paper 2 was under review at the time of the submission of this thesis; the manuscript

reproduced over the following pages was submitted to the PsyArXiv preprint server

on 1 July 2018 (https://doi.org/10.31234/osf.io/jkfyx; Version 1). The citations may be
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looked up on pages 83–86 or in the references list at the end of this volume. The paper

makes reference to four supplementary items, which may be located as follows:

S1. An introduction to communicative cost: Section 2.3.2, page 38.

S2. All model results: Appendix A, page 159.

S3. Participant exclusion and attrition: Appendix B, page 177.

S4. Individual participant results in Experiment 1: Appendix C, page 181.

All work reported in the paper is my own, including the technical development of the

model and experiments. The contributions made by my coauthors were as follows:

Kenny Smith Advice on model design, experimental design, statistical methods, the

model fit procedure, and general editing of the paper.

JenniferCulbertson Advice on experimental design and statisticalmethods, and gen-

eral editing of the paper.

Simon Kirby Conception of the basic idea behind the paper, advice on model design

and experimental design, and general editing of the paper.
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Simplicity and informativeness in semantic category systems

Jon W. Carr, Kenny Smith, Jennifer Culbertson, Simon Kirby
School of Philosophy, Psychology and Language Sciences, University of Edinburgh

Abstract
Recent research has shown that semantic category systems, such as color and
kinship terms, find an optimal balance between the considerations of sim-
plicity and informativeness. We argue that this situation arises through a
pressure for simplicity from learning and a pressure for informativeness from
communicative interaction, two distinct pressures that pull in (often but not
always) opposite directions. An alternative account suggests that learning
might also act as a pressure for informativeness—that learners might be bi-
ased toward inferring informative systems. This results in two competing
hypotheses about the human inductive bias. We formalize these compet-
ing hypotheses in a Bayesian iterated learning model and test them in two
experiments with human participants. Specifically, we investigate whether
learners’ inductive biases, isolated from any communicative task, are bet-
ter characterized as favoring simplicity or informativeness. We find strong
evidence to support the simplicity account. Furthermore, we show how the
application of a simplicity principle in learning can give the impression of
a bias for informativeness, even when no such bias is present. Our find-
ings suggest that semantic categories are learned through domain-general
principles, negating the need to posit a domain-specific inductive bias.

Keywords: category learning; induction; informativeness; iterated learning;
language evolution; simplicity

Introduction

We make sense of the world through a rich system of learned concepts, which allow us
to categorize and make predictions about an infinite range of perceptual stimuli on the basis
of their similarities to previous encounters (Gärdenfors, 2014; Lakoff, 1987; Murphy, 2004;
Rosch, 1973; Shepard, 1987). However, there is no singular, objective way of conceptualizing
the world, and different human populations align on different systems of categorization. In
the domain of kinship, for example, different languages have different ways of grouping
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family members into labeled categories (Murdock, 1970). Cantonese, for example, makes
a lexical distinction between all four grandparents—yèh (father’s father), màh (father’s
mother), gūng (mother’s father), and pòh (mother’s mother) (Cheung, 1990), while most
varieties of English collapse the distinction between the maternal and paternal lineage.

Despite the diversity in how languages classify meanings into categories, there is evi-
dence to suggest that these systems achieve a balance between simplicity (e.g., the number
of categories that must be learned) and informativeness (e.g., the ability to express needed
distinctions). Different languages find different solutions to this tradeoff (as in the com-
parison between Cantonese and English above), but they nevertheless offer a near optimal
balance between the two considerations. This has been shown in a variety of domains,
including kinship terms (Kemp & Regier, 2012), spatial relationships (Khetarpal, Neveu,
Majid, Michael, & Regier, 2013), numeral systems (Y. Xu & Regier, 2014), color terms
(Regier, Kemp, & Kay, 2015), and container names (Y. Xu, Regier, & Malt, 2016).

The idea that languages are shaped by opposing forces has a long history in linguistics
and cognitive science; such ideas can be found in the works of von der Gabelentz (1891),
Zipf (1949), and Martinet (1952). The notion of a tradeoff between simplicity and informa-
tiveness in semantic categories is often attributed to Rosch (1978, p. 28) who argued that
“the task of category systems is to provide maximum information with the least cognitive
effort,” a view echoed by Gärdenfors (2014, p. 132–133) who suggests that concepts achieve
“a balance between the precision of the noun and the number of words that have to be
remembered.” Kemp, Xu, and Regier (2018, p. 111) make this even more explicit:

These two desiderata [simplicity and informativeness] necessarily compete
against each other. A highly informative communicative system would be very
fine-grained, detailed, and explicit—and would as a result be complex, not sim-
ple. A very simple system, in contrast, would necessarily leave implicit or un-
specified many aspects of the speaker’s intended meaning—and would therefore
not be very informative. A system supports efficient communication to the
extent that it achieves an optimal trade-off between these two competing con-
siderations.

However, as Levinson (2012, p. 989) has pointed out, although this body of research demon-
strates that natural languages are both simple and informative and that a tradeoff exists
between these properties, it does not specify the mechanisms that give rise to this state of
affairs. Two recent strands of research attempt to resolve this.

The first strand posits two distinct pressures that play out during language learning
and language use. The pressure for simplicity derives from an inductive bias, which leads
learners to prefer simpler languages. This is because, when learners are trying to understand
the world, the best strategy—given that they have no expectations about how the world is
structured—is to apply Occam’s razor; all things being equal, simpler hypotheses should be
preferred over more complex hypotheses (Li & Vitányi, 2008; Rissanen, 1978; Solomonoff,
1964). This is a highly general principle, claimed to operate across cognitive domains
(Chater, Clark, Goldsmith, & Perfors, 2015; Chater & Vitányi, 2003; Culbertson & Kirby,
2016; Feldman, 2016; Kemp, 2012), but its effect on linguistic and conceptual systems
is amplified by iterated learning, the process by which learned systems are passed down
through generations via cultural transmission. Canini, Griffiths, Vanpaemel, and Kalish



54 chapter 3

SIMPLICITY AND INFORMATIVENESS IN SEMANTIC CATEGORY SYSTEMS 3

Figure 1 . Three models of the cultural evolution of language. In Transmission-only, a
language is repeatedly learned and transmitted to a new generation, exerting a pressure
for simplicity which accumulates over generations. In Communication-only, a pair of inter-
locutors repeatedly interact with each other, which exerts a pressure for informativeness.
Transmission & Communication combines pressures for both simplicity and informativeness.

(2014), for example, show that iterated learning replicates a number of findings from classic
research in concept learning, such as the bias for marking distinctions on one dimension
rather than two (e.g., Ashby & Maddox, 1990; Moreton, Pater, & Pertsova, 2015; Shepard,
Hovland, & Jenkins, 1961). However, on its own, an inductive bias for simplicity will
ultimately result in languages that are maximally simple; in the limit, iterated learning
converges to the prior (Griffiths & Kalish, 2007).

According to this first strand of research, the process that keeps overly simple lan-
guages at bay is communicative interaction. Kirby, Tamariz, Cornish, and Smith (2015)
directly investigate the distinct roles of learning and interaction with three models of the
cultural evolution of language (see Fig. 1). In the Transmission-only model, a language is
transmitted from one individual to the next in a chain of learners. As expected, repeated
learning of the language gives rise to simple systems (e.g., systems that divide meanings into
relatively few, more general categories). In the Communication-only model, two individu-
als repeatedly interact with each other with the goal of successfully communicating. These
repeated interactions give rise to highly complex languages in which every meaning has its
own unique word, allowing the interlocutors to achieve maximum success. The Transmis-
sion & Communication model combines the two pressures: At each generation a pair of
interlocutors attempt to communicate (imposing the pressure for informativeness), but the
language they produce is then learned by a new pair of interlocutors (imposing the pres-
sure for simplicity). In this case, the resultant languages develop compositional structure
that is both easy to learn (simple) and fully productive (informative); working in tandem,
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the two pressures result in languages that find an optimal balance between simplicity and
informativeness. Similar findings regarding the roles of learning and interaction have been
observed in the gestural modality (Motamedi, Schouwstra, Culbertson, Smith, & Kirby,
in press) and under more complex meaning spaces (Carr, Smith, Cornish, & Kirby, 2017).
See Kirby, Griffiths, and Smith (2014) and Tamariz (2017) for reviews.

The second strand of research explains the pressure for informativeness in terms of
an inductive principle rather than the dynamics present in interaction. Focusing on a
particular formalization of informativeness, called communicative cost,1 Carstensen, Xu,
Smith, and Regier (2015) provide evidence that informative semantic categories can arise
through iterated learning, suggesting that humans may have an inductive bias that favors
more informative systems. The authors conducted two studies: Study 1 reanalyzed data
from an iterated learning experiment with color terms (J. Xu, Dowman, & Griffiths, 2013),
and Study 2 was a novel iterated learning experiment using spatial relationship stimuli. Both
studies demonstrated an increase in informativeness over generations in a transmission-only
design, crucially involving no interaction. These results are at odds with those described
above which document the emergence of degenerate or uninformative languages in the
absence of a shared communicative task (Carr et al., 2017; Kirby et al., 2015) or an artificial
analog of such a task (Beckner, Pierrehumbert, & Hay, 2017; Kirby, Cornish, & Smith, 2008).

However, the idea that learning in the absence of communicative interaction can
lead to informative systems has also been suggested by Fedzechkina, Jaeger, and Newport
(2012). In their studies, adult participants restructure miniature artificial languages in
ways that appear to balance effort and ambiguity avoidance (i.e., informativeness). In their
Experiment 1, for example, participants were trained on a language with variable word
order (SOV or OSV) and optional case marking on objects (which were either animate or
inanimate). Crucially, the languages that participants were taught were designed to be
suboptimal in terms of informativeness—when both event participants were animate, and
no case marking was present, it is ambiguous which is the subject and which the object. A
more informative system (which is not overly complex) would consistently use case marking
with animate objects, in order to avoid this potential ambiguity. They found that learners
inferred just such languages, increasing the case marking on animates and decreasing it
on inanimates. Fedzechkina et al. (2012, p. 17900) conclude that, “...language learners
are biased toward communicatively efficient linguistic systems and restructure the input
language in a way that facilitates information transfer.”

To summarize, we have sketched two theories of the role of learning in the emergence
of linguistic and conceptual systems. In the first, learning results in a pressure for simpler
systems, while the pressure for informativeness comes from communicative interaction. In
the second, informativeness is directly built into the process of learning. Both theories
have experimental evidence to support them, but have not been directly compared. In this
paper we describe a model of a Bayesian category learner which implements these alter-
native hypotheses in terms of two possible inductive prior biases: a bias for simplicity or
a bias for informativeness. We show what kinds of languages are expected to result from
iterated learning under each. We then test the predictions of the model in two experi-
ments. In an objective model comparison, we find that human learning biases are better

1This is explained in more detail later, but see Regier et al. (2015), Kemp et al. (2018), or supplementary
item S1 for a more complete introduction.
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Figure 2 . A universe is a two-dimensional metric space consisting of M meanings. This
space may be partitioned into N mutually disjoint categories. Agents are provided with a
fixed set of Nmax signals S, which are used to label the categories. In this example, the
language partitions a 4 × 4 space into three contiguous categories using three of the four
available signals (signals are indicated by colors).

characterized by a preference for simplicity. Furthermore, we show how the application
of a simplicity principle in learning can explain the apparently contradictory experimental
results of Carstensen et al. (2015). Specifically, under a simplicity prior, iterated learning
gives rise to simple category structures that just so happen to have one of the hallmarks of
informativeness—compactness—which we outline in more detail shortly. We argue that this
offers an alternative, more parsimonious explanation of Carstensen et al.’s (2015) findings.

Model

In this section we describe a Bayesian iterated learning model that simulates what
happens when a language is passed down a chain of learners. This reveals the kinds of
languages that arise when pressure from learning—on its own—is repeatedly applied. By
manipulating the prior function, we can test two extreme positions about how learning
shapes conceptual structure. The first position states that learning imparts a pressure for
simplicity from the principle of Occam’s razor; the second position states that learners have
a bias for inferring informative categories which imparts a pressure for informativeness. All
code and data for our model and experiments are available from https://osf.io/hkxqp

Method

The goal of the learner is to infer how a language partitions a universe of meanings into
categories and how those categories are labeled. The basic model framework is illustrated
in Fig. 2. The universe consists of M meanings U = {m1, ..., mM }, which we treat as a
metric space (U, d), where d is the distance function defined between meanings. Usually
we will refer to this space simply as U , sometimes also denoting the dimensionality (e.g.,
U4×4 for a 4 × 4 space of M = 16 meanings). A partition P = {C1, ..., CN } divides U into
N categories, such that 1 ≤ N ≤ Nmax where Nmax ≤ M defines some arbitrary limit on
the number of categories. Each category C is a set of meanings such that all categories are
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nonempty (Ci ̸= ∅), no meaning exists outside a category (⋃N
i=1 Ci = U), and all categories

are mutually disjoint (Ci ∩ Cj = ∅ for i ̸= j). Each category is labeled by one signal from
a fixed set of Nmax signals S = {s1, ..., sNmax} according to a lexicon l : S → P ∪ ∅ (unused
signals map to ∅ where N < Nmax). A language is a partition and lexicon, L = (P, l), but
we use the symbol L to denote either the partition or the lexicon according to context.2

Likelihood. The probability of an agent producing signal s ∈ S given that it pos-
sesses language L and needs to express meaning m is given by

p(s|L, m; ϵ) :=
{

1 − ϵ if m ∈ L(s)
ϵ

Nmax−1 if m /∈ L(s),
(1)

where noise on production is controlled by the free parameter ϵ ∈ (0, 1). If ϵ is small, there
is a high probability that the agent will produce the correct signal for meaning m and a low
probability that it will produce one of the other Nmax−1 signals at random. During learning,
the data observed by an agent is a set of meaning–signal pairs D = {⟨m, s⟩1, ⟨m, s⟩2, ...},
where meaning m is labeled by signal s, a noisy indicator of m’s category membership.
The likelihood of observing dataset D if language L were true is therefore the product of
p(s|L, m; ϵ) over all meaning–signal pairs:

p(D|L; ϵ) =
∏

⟨m,s⟩∈D

p(s|L, m; ϵ). (2)

Simplicity prior. The simplicity prior endows agents with an inductive bias fa-
voring simple languages; when the observed data is equally likely under two languages, an
agent will prefer the language that is simpler following the principle of Occam’s razor. The
simplicity prior πsim is therefore inversely proportional to the complexity of the language:

πsim(L) ∝ 2−complexity(L). (3)

The complexity of a language is given by its description length. For our description method,
we adopt Fass and Feldman’s (2002) rectangle code, which provides a set of rectangle
“symbols” that may be used to describe an arbitrary region (i.e., a category’s extension) in
the universe. Like any alphabet, some symbols are more common than others. Information
theory tells us that the optimal codelength of a symbol that occurs with probability p
is − log p bits. We follow Fass and Feldman (2002) and assume that rectangle shapes occur
with uniform probability, and that, for a given shape, its position in the universe occurs
with uniform probability. In U4×4, this yields the codelengths shown in Table 1 (reproduced
from Fass & Feldman, 2002, p. 39) and a total of 100 symbols, which are illustrated in Fig. 3.

A valid description of a category is a set of rectangle symbols that exactly describe
the category’s extension, which we call a “rectangularization” of that category. For a given
category C, there are usually many possible rectangularizations, the set of which is given
by ℜ(C). A rectangularization R ∈ ℜ(C) that minimizes description length is selected.3

2The distinction between partition and language is largely unimportant for our purposes. We are mostly
concerned with the partition—how the space is structured into discrete categories. Signals merely function
as indicators to how the space is partitioned.

3In U4×4, this can be computed quickly, but in larger spaces, the process quickly becomes intractable. We
alleviate this using a number of methods. First, a category is separated into independent contiguous chunks,
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Figure 3 . The 100-symbol alphabet used to describe categories in a 4×4 universe. For illus-
trative purposes, the symbols are shown with binary codewords derived from the (nonopti-
mal) Shannon-Fano algorithm: Probable symbols (i.e., rectangles) are assigned short code-
words and improbable ones are assigned long codewords. Since the codewords have the
prefix-free property, they may be concatenated to describe arbitrary regions of the space.
For example, the binary string 001100101001000 describes a T-shaped region.
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Table 1
Calculation of symbol codelengths for a 4 × 4 universe.
Rectangle shapes N positions Probability Codelength (bits)
1 × 1 16 1/10 × 1/16 = 1/160 − log 1/160 = 7.32
1 × 2 24 1/10 × 1/24 = 1/240 − log 1/240 = 7.91
1 × 3 16 1/10 × 1/16 = 1/160 − log 1/160 = 7.32
1 × 4 8 1/10 × 1/8 = 1/80 − log 1/80 = 6.32
2 × 2 9 1/10 × 1/9 = 1/90 − log 1/90 = 6.49
2 × 3 12 1/10 × 1/12 = 1/120 − log 1/120 = 6.91
2 × 4 6 1/10 × 1/6 = 1/60 − log 1/60 = 5.91
3 × 3 4 1/10 × 1/4 = 1/40 − log 1/40 = 5.32
3 × 4 4 1/10 × 1/4 = 1/40 − log 1/40 = 5.32
4 × 4 1 1/10 × 1/1 = 1/10 − log 1/10 = 3.32

Description lengths are then summed over all categories to obtain the overall complexity of
a language:

complexity(L) :=
∑

C∈L

min
R∈ℜ(C)

∑

r∈R

− log p(r). (4)

Illustrative examples are shown in Fig. 4.
Informativeness prior. To model an inductive bias for informativeness, we di-

rectly adopt the communicative cost framework used by Carstensen et al. (2015) and other
studies from that literature (Kemp & Regier, 2012; Khetarpal et al., 2013; Regier et al.,
2015; Y. Xu & Regier, 2014; Y. Xu et al., 2016). This prior endows agents with an induc-
tive bias toward informative languages; when the observed data is equally likely under two
languages, an agent will prefer the language that is more informative. The informativeness
prior πinf is inversely proportional to the communicative cost of the language:

πinf(L) ∝ 2−cost(L), (5)
and communicative cost is calculated according to:

cost(L) :=
∑

C∈L

∑

m∈C

p(m) · − log C̃(m), (6)

where p(m) is the probability of a meaning occurring (assumed to be uniform; p(m) = 1/|U |)
and C̃(m) is the probability that a hypothetical listener would infer meaning m on hearing
the signal associated with category C. The probability distribution C̃ is given by

C̃(m) ∝
∑

m′∈C

exp −γd(m, m′)2, (7)

which are dissected into an initial set of rectangles based on the two chords emanating from each concave
vertex. Rectangles that share an edge are then recursively merged until no further mergers are possible
using dynamic programming techniques. For large chunks an estimate must be obtained by beam search
due to an explosion in the number of candidate solutions that must be explored. It may be possible to use
graph-theoretic methods to find optimal rectangularizations (see e.g., Eppstein, 2010), but currently known
methods are designed to minimize the number of rectangles rather than some cost function on rectangles.
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Figure 4 . Computing the complexity of three example languages in a 4 × 4 universe.
Categories are indicated by the four colors. Each category is described by a set of rectangle
symbols that minimize codelength. The top language does not permit a short description
and is therefore considered complex. The middle language consists of three contiguous
categories which permit a shorter description, so it is therefore considered less complex.
The bottom language, which has a very short description, is the simplest four-category
language. The binary strings are concatenated from the codewords shown in Fig. 3.

where γ > 0 controls how quickly similarity decays with distance and d(·, ·) gives the dis-
tance between two meanings in (U, d). In all work reported below, we set γ = 1 and d is
the Euclidean metric. This models categories as Gaussians in which the most prototypical
meaning (the meaning at the geometric center of the category with the greatest similarity
to other category members) has the highest probability of being inferred by a hypothetical
listener. This is illustrated in Fig. 5, but note that no interaction is actually played out be-
tween our agents; rather, the learner has a bias favoring languages that would hypothetically
be more informative in expected communicative scenarios.

Communicative cost predicts three key properties that make a semantic category
system informative:

1. Expressivity The more categories a system has, the more informative that system
is (i.e., communicative cost is lower).

2. Balanced cardinality The more evenly-balanced the category sizes are, the more
informative the system is (i.e., communicative cost is lower).

3. Compactness The more compact categories are, the more informative the system is
(i.e., communicative cost is lower).
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Figure 5 . A speaker wishes to communicate a target meaning t from a universe of meanings.
She determines which category the target belongs to according to the shared language L,
which partitions the universe into categories, and utters its associated word. The listener
maps this word back to a category of possible meanings and must decide on a specific
meaning to infer. He is more likely to infer prototypical (central) members of the category.
Informative languages with low communicative cost are structured in such a way as to
minimize the potential loss of information that occurs during interaction.

Thus, under the informativeness bias, the learner will prefer systems that exhibit these three
properties. Of these, the compactness property is especially important to this paper. By
“compactness” we mean the extent to which similar meanings belong to the same semantic
category and dissimilar meanings belong to different semantic categories. Sometimes this
property is described as “well-formedness” (Regier, Kay, & Khetarpal, 2007) or by the sim-
ilar notion of “convexity” (Gärdenfors, 2000). Compact categories are informative because
they minimize the distance between the speaker’s intended meaning and the listener’s in-
ferred meaning; if a speaker has a particular color in mind and utters the word blue, the
extent to which the listener will successfully infer the speaker’s intended meaning is a func-
tion of how compact the blue category is in their shared language. For a more complete
introduction to communicative cost, consult the references above or supplementary item S1.

Posterior. On observing data D, a Bayesian agent samples a language L from the
posterior distribution over the space of language hypotheses L. The posterior is given by

p(L|D; π, w, ϵ) ∝ p(D|L; ϵ)π(L)w, (8)

where w is a free parameter determining the strength of the prior. In all work that follows,
we set Nmax = 4 (an agent is limited to inferring at most four categories) and we assume an
8 × 8 universe, so the number of language hypotheses is |L| = 464. Since we cannot sample
directly from a hypothesis space of this size, we use the Metropolis–Hastings algorithm,
which is initialized with a random language L0. To select the language at the next step,
Li+1, we propose a candidate language L′ and then calculate the acceptance ratio α, given
by
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α = p(L′|D; π, w, ϵ)
p(Li|D; π, w, ϵ) · p(Li|L′)

p(L′|Li)
. (9)

To propose a candidate language, a rectangular region in U8×8 is chosen at random such
that all meanings in that region belong to a single category according to Li; these meanings
are then transferred to one of the other three possible categories at random, forming the
new candidate L′.4 This proposal function is asymmetric—p(L′|Li) ̸= p(Li|L′)—which
is accounted for by the proposal ratio in Equation 9. Finally, the candidate language is
accepted (Li+1 = L′) if α ≥ 1 or with probability α if α < 1; otherwise the candidate is
rejected and the previous state is retained (Li+1 = Li). This process is repeated 5000 times,
and the final state is taken to be a fair sample from the posterior.

Iterated learning. Agents are organized into chains such that the production out-
put of one agent becomes the training input to the following agent in the chain, subject to
noise on production and the bottleneck on transmission, a limit on how much information
is transmitted from one generation to the next. An agent produces signals for each of the
64 meanings in U8×8 according to Equation 1, such that any given signal may be a produc-
tion error with probability ϵ. The meaning–signal pairs that pass through the bottleneck
are selected pseudorandomly to ensure that the following agent in the chain sees a uni-
form spread over the whole space (this becomes more relevant to the experiments reported
later). Specifically, the 8 × 8 space is broken into 16 2 × 2 segments and a fixed number of
meanings b ∈ {1, 2, 3, 4} are randomly selected (without replacement) from each segment,
b being the bottleneck parameter (see Fig. 6 for examples). Finally, we also consider the
exposure level ξ which controls how many exposures an agent gets to the dataset (i.e., each
meaning–signal pair that passes through the bottleneck is observed ξ times).

Summary. The model provides five free parameters (summarized below), which we
manipulate and discuss in the following section.

1. Prior (π) We consider two prior functions as models of two extreme positions. First,
a prior for simplicity, πsim, motivated by the principle of Occam’s razor in inductive
reasoning. Second, a prior for informativeness, πinf , motivated by the theory that
learners are biased toward making languages more informative.

2. Weight (w) The weight parameter affects the strength of the prior bias. When w = 1
the prior is left unchanged; when w > 1, the prior is strengthened; when 0 < w < 1
the prior is weakened; and when w = 0 the prior is flattened to a uniform distribution.

3. Bottleneck (b) The size of the bottleneck determines how much data passes from
one generation to the next (specifically, b is the number of meanings selected from
each 2 × 2 segment).

4. Exposures (ξ) The number of exposures determines how many times an agent is ex-
posed to the dataset D, the meaning–signal pairs that passed through the bottleneck.

4A simpler symmetric proposal function in which single meanings are moved between categories at each
step is prone to getting stuck in local maxima, which limits the ability of the algorithm to freely explore the
hypothesis space under either prior function. Note that this method is not biased toward introducing new
rectangles because it only modifies the category membership of rectangular areas that already exist.
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Figure 6 . Illustration of the transmission procedure over a single generation. The agent
at generation i has a language (column 1), which it uses to produce signals with some
probability of noise ϵ (column 2). These productions are passed through the bottleneck on
transmission by dividing the universe into 16 2 × 2 segments (black grids) and selecting
b meanings from each segment (column 3). The agent at generation i + 1 only sees the
signals associated with these meanings and, aided by the prior, must generalize to unseen
meanings (white cells) forming a new language (column 4). The language is transmitted
most faithfully when there is low noise (e.g., ϵ = .01) and a wide bottleneck (e.g., b = 2).
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5. Noise (ϵ) The noise parameter affects how many production errors an agent makes
when producing signals for the following generation to observe. It also appears in the
likelihood function, encoding an expectation of how much noise there is in the data.

Results

Results are shown in Fig. 7 under the parameter settings b = 2, ξ = 2, and ϵ = .01 (for
the full set of model results under 48 parameter combinations, see supplementary item S2
or https://joncarr.net/p/shepard/). We contrast three prior biases: the simplicity prior
with w = 1, the informativeness prior with w = 1, and a strong form of the informative-
ness prior with w = 500. This strong form of the informativeness prior emphasizes the
compactness property discussed earlier; agents with this prior bias have a strong proclivity
toward compact categories that minimize the potential for communicative error. We con-
sider four quantities of interest: expressivity (the number of categories inferred), complexity
(Equation 4), communicative cost (Equation 6), and transmission error, which is measured
as the variation of information (VI; see Meilă, 2007) between the language in a particular
generation (L) and the language in the previous generation (L′):

VI(L, L′) = −
∑

C∈L,C′∈L′

|C ∩ C ′|
|U | (log |C ∩ C ′|/|U |

|C|/|U | + log |C ∩ C ′|/|U |
|C ′|/|U | ). (10)

Under this measure, an agent who fully reproduces the partition used by the previous agent
in the chain will have VI of 0 bits; maximum VI is log |U | = 6 bits.

The results under the simplicity prior are shown by the blue lines in Fig. 7 and a typical
chain is depicted in Fig. 8A. Over 50 generations, the languages become less complex, which
is achieved in two ways: First, the categories take on simple, contiguous structures that
may be described by a shorter description in the rectangle code; and second, categories are
gradually lost over time, further simplifying the languages. This has an interesting effect
on communicative cost, which initially drops—implying more informative languages—but
then begins to rise again. This is because the contiguous categories that initially emerge
are generally quite compact, and since communicative cost is sensitive to compactness,
it initially decreases. But this effect is then gradually eroded by the loss of expressivity.
Furthermore, the category structures that arise under the simplicity prior tend to mark
distinctions on just one of the two dimensions; in the example in Fig. 8A, the language ends
up marking a three-way distinction on the x-axis. This overall process of simplification
results in more learnable languages, as indicated by decreasing transmission error over
time. Within around 10 generations, the languages have simplified into configurations that
are reliably transmitted from one generation to the next, despite the fact that agents only
receive input data for half (b = 2) of the meanings.

The results under the basic informativeness prior (w = 1) are shown by the solid red
lines in Fig. 7 (see Fig. 8B for a typical example). The bias for informativeness causes the
agents to maintain all four categories in well-balanced proportions, but there is no effect
on transmission error, complexity, or communicative cost. This is because the prior is very
flat with respect to compactness and mostly encodes a preference for greater expressivity,
which cannot be obtained because of the Nmax = 4 limit that we have imposed. If we
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Figure 7 . Results for expressivity, transmission error, complexity, and communicative cost
under a simplicity prior (w = 1, solid blue), informativeness prior (w = 1, solid red), and
a strong form of the informativeness prior (w = 500, dashed red). Plots show the mean of
100 chains over 50 generations, and the shaded areas show the 95% confidence intervals on
the mean. Agents see half of the meanings (b = 2) in two exposures (ξ = 2) with a 1%
chance of noise on production (ϵ = .01).

were to remove this limit, expressivity would rise to 64 categories (every meaning forms
its own category), communicative cost would decrease to its minimum value of 0 bits, and
complexity would increase to its maximum value of around 715 bits.

The dashed red lines in Fig. 7 show results under the strong informativeness prior
(w = 500; see Fig. 8C for an example). When the informativeness prior is strengthened
in this way, all four categories continue to be maintained in well-balanced proportions, but
communicative cost also experiences a sustained decrease because the stronger prior favors
categories that are maximally compact. This pressure for compactness drives chains toward
one special partition of the universe: the partition into quadrants, as seen in the final
generation in Fig. 8C. This quadrant partition is the optimal packing of the space into four
equally-sized categories. Within a category, the Euclidean distance is minimized between
any two category members; such a system is informative because it minimizes the potential
degree of communicative error.

The extent to which chains converge to the prior bias—be it for simplicity or
informativeness—is essentially controlled by intergenerational information loss, which Spike,
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Figure 8 . An example chain for each of the three prior biases: (A) the simplicity prior, (B)
the informativeness prior, and (C) the strong informativeness prior. Each chain consists of
the randomly generated language that initialized the chain (generation 0) followed by 50
generations of iterated learning. Each chain is broken across four rows.

Stadler, Kirby, and Smith (2017) argue is an essential requirement in the emergence of struc-
tured languages. The greater the information loss, the faster the convergence to the prior.
In other words, the less data an agent has to rely on, or the more unreliable that data is, the
more the agent must lean on its prior bias to reconstruct the language. This is illustrated
in Fig. 9, which shows the distributions of complexity scores in the final (50th) generation
under the simplicity bias. There is greater convergence to the prior bias for simplicity when
the bottleneck is tighter, there are fewer exposures, or the level of noise is greater.

Summary

We have put forward a model of a Bayesian language learner and have considered two
prior functions: one for simplicity and one for informativeness. These two priors represent
two extreme positions that one may take in regard to the learning of semantic categories.
In addition, we consider what happens when the informativeness prior is strengthened such
that the compactness component of informativeness is magnified. The results show that,
when the number of categories is limited to four (i.e., Nmax = 4), as is the case in Carstensen
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Figure 9 . Each density plot shows how complexity is distributed in the final-generation
languages across 100 chains. The distributions in blue are identical and show results under
the simplicity bias with parameter settings b = 2, ξ = 2, and ϵ = .05; dashed lines show
mean complexity under these parameters. The distributions in black show what happens
when one parameter is manipulated, while holding the other two constant. Chains become
simpler faster when there is a tighter bottleneck, fewer exposures, or noisier productions.
Distributions are scaled to equal height to highlight their shape.

et al. (2015, Study 2), communicative cost only decreases in two situations. Either agents
must have a simplicity bias, in which case the decrease in communicative cost is predicted
not to be sustained in the long run, or agents must have a strong form of the informativeness
bias (i.e., a form of the informativeness bias that strongly favors compact categories because
they minimize communicative error). If the simplicity prior offers a better model, we would
expect to find that iterated learning results in a loss of expressivity and leads to contiguous
category structures that make distinctions on principally one dimension (because these types
of system are simpler). If the informativeness prior offers a better model, we would expect to
find that iterated learning maintains high expressivity and—if the compactness component
of the bias is especially strong—it should lead to a sustained decrease in communicative cost
and maximally compact category structures, the optimal configuration being a partition of
the universe into quadrants. We test these predictions in two experiments.

Experiment 1

In Experiment 1, we test for a difference in learnability between two basic types of
category structure—stripes and quadrants—which are illustrated in Fig. 10 (specific details
about the stimuli will be explained shortly). The model presented above yields predic-
tions about how easy these systems should be to learn. If learners have an inductive bias
for simplicity, then simple category structures (i.e., stripes) should be learned more eas-
ily than more complex structures (i.e., quadrants). If learners have an inductive bias for
informativeness then the model makes two predictions: Under the basic informativeness
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Figure 10 . The three category systems in Experiment 1. The stimulus space is discretized
into four equally-sized categories in three ways. The Angle-only and Size-only partitions
are simple. The Angle & Size partition is more complex but offers a potential benefit in
terms of informativeness because category members are more tightly packed.

Table 2
Model predictions tested by Experiment 1
Inductive bias Prediction made by the model
Simplicity Stripes easier to learn than quadrants

(because stripes are simpler)
Informativeness Stripes and quadrants are equally easy to learn

(because both are approximately equally informative)
Strong informativeness Quadrants easier to learn than stripes

(because quadrants are more informative/compact)

bias (w = 1), stripes and quadrants should be similarly learnable because they are (ap-
proximately) equally informative (four categories each with 16 members); under stronger
forms of the informativeness bias (w > 1), quadrants should be easier to learn than stripes
because they constitute a more compact packing of the space, minimizing the potential for
communicative error. These predictions are summarized in Table 2 and illustrated more
formally in Fig. 11.

Method

The experiment was a simple category learning task. Participants were first trained
on one of three category systems (approximately 15 min) and were then tested to see how
well they learned the system (approximately 5 min). We test participants through either a
production test (given a stimulus, supply a label) or a comprehension test (given a label,
supply a stimulus). The production version of the experiment is matched to the model; the
comprehension version was included in case the effect of an informativeness bias in learning
only manifests itself when participants recognize that they need to be able to comprehend
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Figure 11 . Assume that an agent must choose between two hypotheses, a striped partition
or a quadrant partition, given data that is equally likely under either. The simplicity and
informativeness priors make opposite predictions about which hypothesis will be inferred,
which is exaggerated as the strength of the bias is increased. If the prior is uniform (w = 0),
the agent has no prior preference between the two languages.

the language. The experiment therefore has a 3 × 2 design: Participants were assigned
randomly to one of three category systems (as detailed below) and to one of two test types
(Production or Comprehension).

Participants. 240 participants were recruited through the Figure Eight platform
(https://www.figure-eight.com), 40 in each of the six conditions.5 Participants were paid
$3.00 for participation, plus up to $1.92 in bonuses based on the accuracy of their learning
(as detailed below). Ethical approval was granted according to the procedures of the School
of Philosophy, Psychology and Language Sciences at the University of Edinburgh. All
participants provided informed consent.

Stimuli. We adopted the so-called “Shepard circles” (Shepard, 1964) as our stimulus
space (see Fig. 10), which vary continuously in angle and size. The space was quantized
onto an 8 × 8 grid, yielding 64 discrete stimuli. The radii increase linearly from 25 pixels
to 200 pixels and the angles increase linearly over 180◦ from 147◦ to 327◦. The stimuli
closely replicate the Shepard circles used by Canini et al. (2014, Fig. 1, p. 787), who showed
in a multidimensional scaling analysis that participants’ dissimilarity perceptions of these
stimuli are closely correlated with the Euclidean distance in the 8 × 8 grid. This makes
the stimuli well justified analogs of the abstract meanings used in the model and allows us
to assume that the Euclidean distance in the 8 × 8 grid is an acceptable approximation of
perceived dissimilarity.

The three category systems differ in how the stimulus space is partitioned into four
categories, as shown in Fig. 10. In the Angle-only system, the categories mark a four-way
distinction in angle; in the Size-only system, the categories mark a four-way distinction in

5A total of 309 participants began the experiment, but three were excluded because they repeatedly
clicked the same response button, and a further 66 terminated the experiment prior to completing it, so
their data were erased because they were deemed to have withdrawn consent. See supplementary item S3
for additional details.
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Table 3
Category labels
Set Labels
1 pov reb wud zix
2 gex juf vib wop
3 buv jef pid zox
4 fod jes wix zuv

size; and in the Angle & Size system, the categories mark a four-way distinction that relies
on both dimensions. In all three systems, the number of categories (four) and the cardinal-
ity of categories (16) is equal, but they still differ in terms of simplicity and informative-
ness. The striped category systems (Angle-only and Size-only) are simpler (complexity =
35.91 bits), since only one dimension needs to be considered; in contrast, the quadrant
system (Angle & Size) is more complex (complexity = 39.26 bits), since both dimensions
need to be considered. However, the more compact packing of the Angle & Size system
makes it marginally more informative (cost = 4.20 bits) than the other two category struc-
tures (cost = 4.29 bits), a difference that is magnified if we assume a stronger form of the
informativeness prior.

The category labels used to label the stimuli were three-letter nonwords (see Table 3).
To create the labels, we generated all CVC strings, such that the first consonant letter was
not the same as the final one, and then removed valid English words (e.g., pin). For each of
the remaining candidate labels, we attempted to translate the word into English from each
of the 63 languages that use the Latin script in Google Translate. If Google was unable to
offer a translation, we assumed that the label was not a real word in that language. We
then selected 16 unique labels that were meaningless in as many languages as possible, such
that they could be arranged into four sets of four labels in which any given set used no
letter more than once. Each participant was assigned one set of labels selected at random,
and the mapping between labels and categories was randomized for every participant. This
procedure was designed to mitigate possible interference from native language and to reduce
the possibility of iconic meaning–signal correspondences occurring, potentially making some
mappings easier to learn than others (see e.g., Nielsen & Rendall, 2012; Nygaard, Cook, &
Namy, 2009).

Training procedure. In the training phase, participants were trained on half of the
64 stimuli. These 32 stimuli were selected pseudorandomly through the same bottlenecking
procedure used in the model (see Fig. 6), which ensures that an equal number of training
items (eight) are selected from each category. Training on the 32 items was repeated four
times (i.e., in four blocks), since initial piloting indicated that participants would need at
least four exposures to perform well above chance.

In each training block, the participant was exposed to each of the 32 training items
in random order. In a single exposure (see Fig. 12), the stimulus was presented first, and
after a one-second delay, the sentence “This is a zix” appeared containing the relevant
category label; this sentence remained on screen for 3 s, at which point it was replaced by
the question “What is it called?” along with four buttons showing the four possible labels
(the order of the label buttons was randomized on every trial). If the participant clicked the
correct button, the button turned green; if incorrect, the button turned red and the button
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Figure 12 . Illustration of training and test trials (not to scale). In training trials, the
participant is shown a stimulus and its category label; after 3 s they must click the correct
label. Participants cannot simply rely on short-term memory because training is also in-
terspersed with mini-tests in which participants are tested on a previously-seen item. Test
trials (and mini-test trials) differ according to condition: The participant is either given a
stimulus and must supply a label (Production) or given a label and must supply a stimulus
(Comprehension). A 2¢ bonus is awarded for every correct test or mini-test response.

for the correct label turned green. After every fourth training trial (i.e., eight times per
block, 32 times in total), a “mini-test” was inserted. Mini-test trials took the same form as
the test trials according to condition as described below. The participant was awarded 2¢
for every correct mini-test response; a running total at the top of the screen recorded the
total bonuses earned during training. The purpose of the mini-tests and bonusing scheme
was to keep participants interested and highly incentivized to learn the language as well as
possible.

Production procedure. The test phase differed according to condition. Partici-
pants assigned to the Production test-type were asked to label all 64 stimuli. On each test
trial, a stimulus was presented alongside the question “What is this called?” (see Fig. 12).
After a 1 s delay, the set of four labels appeared below in random order. It was made clear
to the participant that they would be awarded 2¢ for every correct response; however, no
feedback was given during the test, including no running total of the bonuses earned. The
lack of feedback during the test was designed to elicit responses based on the hypothesis
fixed during training.

Comprehension procedure. For participants assigned to the Comprehension
test-type, mini-test and test trials took a different form (see Fig. 12). In these trials,
the participant was presented with a sentence like “Click on a reb” and, after a 1 s delay,
was provided with an 8 × 8 grid of thumbnail images showing all 64 stimuli in random
order. This was accompanied by a stimulus viewer which showed the stimuli at full size as
the participant hovered their cursor over the thumbnails. Like Production, there were 64
trials, 16 per label, with trials in random order. The participant was awarded a 2¢ bonus
for every correct answer; any of the 16 items from the relevant category was considered
correct, so the payoff structure is identical under either test type—in both cases there is a
1/4 probability of a correct response by chance.
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Figure 13 . Density plots showing the distribution of participants’ test accuracies (pro-
portion of test responses that were correct) by condition. White lines show the medians;
the dashed lines show chance level. Participants learning the Angle-only system had the
highest accuracy and participants learning the Angle & Size system had the lowest accu-
racy, regardless of whether participants were tested through production or comprehension.
Distributions are scaled to equal height to highlight their shape.

Results

Fig. 13 shows how accurate participants were by condition (the proportion of test
responses that were correct). A linear mixed-effects regression analysis was used to test
for an effect of condition on a participant’s chance of giving a correct response on a given
test trial with participant as a random effect.6 Helmert contrast coding was used to test
the category systems in a step-wise fashion (i.e., first whether the Angle-only and Size-
only systems differ, and then whether those systems combined differ from the Angle & Size
system). There was no significant difference between Production and Comprehension (β =
0.20±0.23, p = .371). The Size-only system was significantly harder to learn than the Angle-
only system (β = −1.10±0.20, p < .001). Crucially, and as hypothesized, participants found
the Angle & Size system significantly more difficult to learn than the striped systems (β =
−0.66±0.11, p < .001). For illustrations of individual participant results, see supplementary
item S4.

Summary

Experiment 1 directly addresses a predicted difference between learning biases for
simplicity and informativeness. If learners have an informativeness bias that strongly prefers
compact categories, we would expect to find that the quadrant configuration is readily
inferred, but this was not the case. Participants found the quadrant configuration difficult

6All statistical analyses reported in this paper were conducted using version 1.1.13 of the R package lme4
(Bates, Mächler, Bolker, & Walker, 2015).
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Table 4
Model predictions tested by Experiment 2
Inductive bias Predictions made by the model
Simplicity Expressivity decreases over generations

Transmission error decreases over generations
Complexity decreases over generations
Cost decreases and then increases over generations

Informativeness Expressivity is maintained over generations
Transmission error is maintained over generations
Complexity is maintained over generations
Cost is maintained over generations

Strong informativeness Expressivity is maintained over generations
Transmission error decreases over generations
Complexity decreases over generations
Cost decreases over generations

to learn, while the striped partitions were significantly easier, as predicted under a simplicity
bias.

Experiment 2

In Experiment 2, we conducted an iterated learning experiment closely matched to
the model described earlier in this paper. The aim of this experiment was to test whether
informative systems could emerge through iterated learning, as found by Carstensen et
al. (2015). Perhaps, for example, a bias for informativeness only manifests itself when
amplified by iterated learning. Table 2 summarizes the predictions made by the model
in terms of what should happen under different inductive biases in iterated learning (see
also the model results in Fig. 7). A simplicity bias predicts a generational decrease in
expressivity, transmission error, and complexity, and an initial decrease in communicative
cost that would not be sustained over subsequent generations. An informativeness bias
predicts that expressivity will be maintained over generations and, if the bias strongly
prefers compactness, a sustained decrease in communicative cost, which also leads to a
decrease in complexity and transmission error.

Method

From the point of view of the participant, Experiment 2 was identical to the Produc-
tion version of Experiment 1. Participants learn and reproduce labels for stimuli, but—
unbeknown to them—their production output is passed on to a new participant, whose
production output is in turn passed on to another new participant, following a standard
iterated learning design.
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Participants. 224 participants were recruited through the Figure Eight platform.7
Participants who had already taken part in Experiment 1 were not able to take part in
Experiment 2. Payment was identical to Experiment 1. Ethical approval was granted
according to the procedures of the School of Philosophy, Psychology and Language Sciences
at the University of Edinburgh. All participants provided informed consent.

Transmission procedure. As in the model, the initial participant in a chain was
given a randomly generated language to learn with an equal number of meanings in each
category. The language they produced during the test phase was then transmitted to a
new participant, subject to the same bottlenecking procedure as the model (b = 2). Par-
ticipants were assigned to one of 12 chains at random, and chains were run for a minimum
of 10 generations. After the 10th generation, we allowed the chains to continue running
until they eventually converged on a particular categorization system. Chains were deemed
to have converged when two consecutive participants infer exactly the same language, sug-
gesting that that language is especially easy to learn—an attractor in the space of possible
languages.

Results

Fig. 14 depicts the evolution of all 12 chains (labeled A–L) through to convergence,
and the converged-on languages are summarized in Fig. 15. In two cases, the languages
collapsed to a single category; in one case, a two-category system emerged; and in eight
cases, a three-category system emerged. Only in one case did the language retain all four
categories. Fig. 15 also highlights the category structures that emerged. In eight cases
(dashed black box), a system of contiguous categories emerged marking distinctions on the
angle dimension, while in two cases (dashed gray box), a system of contiguous categories
emerged marking distinctions on the size dimension. This is consistent with Experiment 1
where we found that size-based systems were harder to learn than angle-based systems;
the languages are adapting to the learning biases of their learners. These findings speak
directly to the predictions made by the simplicity prior in the model: We observe a loss
of expressivity and the emergence of simple, contiguous category structures that make
distinctions on principally one dimension.

Fig. 16 shows the results under the same four quantitative measures computed for the
model. Results are shown only for the first 10 generations, for which we have data from all 12
chains. A linear mixed-effects regression analysis was used to test for an effect of generation
on each of the four measures with chain as a random effect and by-chain random slopes
for the effect of generation (following the procedure recommended by Winter & Wieling,
2016). P-values were obtained by likelihood ratio tests of the full model against a null model
without the effect in question. To be conservative, generation 0 is not included because it
is not derived from participant data. As predicted by the simplicity prior in the model,
expressivity (β = −0.06 ± 0.03, χ2 = 5.19, p = .023), transmission error (β = −0.22 ± 0.05,
χ2 = 13.22, p < .001), and complexity (β = −22.59 ± 6.12, χ2 = 9.67, p = .002) all
decreased with generation. Over time, the languages become simpler and less expressive,

7A total of 273 participants began the experiment, but one was excluded because they repeatedly clicked
the same response button, and a further 48 terminated the experiment prior to completing it, so their data
were erased because they were deemed to have withdrawn consent. See supplementary item S3 for additional
details.
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Figure 14 . Evolution of all 12 chains (labeled A–L) in Experiment 2. Each chain consists of
the randomly generated language that initialized the chain (generation 0) followed by the
language produced by each subsequent participant in the chain. Some chains are broken
across multiple rows. Chains were run for a minimum of 10 generations, after which they
continued to run until two consecutive participants inferred exactly the same language.
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Figure 15 . The languages that were converged on across all 12 chains (labeled A–L) grouped
by number of categories. Eight of the emergent languages mark distinctions in angle (dashed
black box) and two of the languages mark distinctions in size (dashed gray box).

and as a result more faithfully transmitted. Contrary to Carstensen et al. (2015), we did
not find a decrease in communicative cost over generations (β = 0.009 ± 0.01, χ2 = 0.46,
p = .499), implying that the languages are not becoming more informative.

Model fit

Although the experimental results reported above are strongly suggestive that the
simplicity prior offers a better model of semantic category learning, we can also estimate the
parameters of our model from the experimental data to objectively determine which prior
function offers the better fit. The experiment fixes two parameters, the bottleneck b = 2
and the number of exposures ξ = 4 (i.e., participants get four exposures in four training
blocks), while the prior function π, its weight w, and the noise level ϵ are unknown. To
estimate these parameters from the experimental data, we start by defining the maximum
a posteriori (MAP) probability that a participant would produce certain output data (Dout)
given their input data (Din) under certain parameter assumptions:

pmap(Dout|Din; π, w, ϵ) = max
L∈L

p(Dout|L; ϵ)p(L|Din; π, w, ϵ)
∑

L′∈L p(Dout|L′; ϵ)p(L′|Din; π, w, ϵ) , (11)

where p(Dout|L; ϵ) is the likelihood from Equation 2, and p(L|Din; π, w, ϵ) is the posterior
from Equation 8, which now becomes a prior. By maximizing over the space of possible
languages, this probability is defined in terms of the language that the participant is most
likely to have had in mind given the data they received and the data they produced (under
certain parameter assumptions).
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Figure 16 . Experimental results for expressivity, transmission error, complexity, and com-
municative cost. Over 10 generations, the languages become simpler, easier to learn, and
less expressive. Communicative cost remains static implying that the languages are not
becoming more informative.

Guided by Equation 11, we estimate the likelihood of our experimental dataset D
(i.e., participants’ ⟨Din, Dout⟩ pairs8) under settings of π, w, and ϵ as

p(D; π, w, ϵ) =
∏

⟨Din,Dout⟩∈D
p(Dout|L∗; ϵ), (12)

where L∗ is a language sampled from the posterior p(L|Din; π, w, ϵ) using the same tech-
niques applied to the model. In other words, for each participant, we simulate what happens
when an agent learns from the participant’s Din; the agent infers a language L∗ and we cal-
culate the probability of the agent producing the participant’s Dout given L∗. We may then
seek parameter values that maximize this probability across the experimental dataset as a
whole (i.e., parameter values that maximize the probability of an agent producing the same
output as a participant when given the same input as that participant). For each of the
prior functions, πsim and πinf , we estimate w∗ and ϵ∗, the parameter values that maximize
Equation 12:

8The model fit was performed on data from 168 of the 224 participants (75%). We excluded participants
whose transmission error was greater than 3 bits, since including them led to very high estimates of noise
and a poor fit under either of the priors. In other words, for the purpose of estimating the best parameter
values, we retain participants who infer a hypothesis based closely on their input data.
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Figure 17 . Model fit results for the simplicity prior (left) and informativeness prior (right).
Each plot shows how the weight and noise parameters affect the likelihood of observing the
experimental dataset. Yellow areas indicate settings of w and ϵ that offer a good fit to the
experimental data. The black stars show the maximum likelihood estimates, the parameter
values that maximize Equation 12.

w∗, ϵ∗ = arg max
w,ϵ

p(D; π, w, ϵ). (13)

These values were obtained by maximum likelihood estimation using a Bayesian optimizer
(Head et al., 2018). ϵ was bounded in (0, 1). w was bounded in [0, 4] for the simplicity prior
and [0, 1000] for the informativeness prior. The upper bounds were selected based on initial
experimentation, which indicated that the likelihood would drop off beyond these values.

The results of the model fit are shown in Fig. 17. For the simplicity prior, the
maximum likelihood estimates are w∗

sim ≈ 1.37 and ϵ∗
sim ≈ .23, yielding a log likelihood of

−11323.09. For the informativeness prior, the maximum likelihood estimates are w∗
inf ≈

243.3 and ϵ∗
inf ≈ .37, yielding a log likelihood of −17283.35. These results tell us that,

overall, the best fit to the experimental data is given by a slightly strengthened simplicity
prior with a noise level of around 23%. For the informativeness prior, the best fit is obtained
by strengthening it and assuming a noise level of around 37%. The likelihood ratio is 25960,
offering overwhelming evidence that the simplicity prior gives a better fit to the experimental
data than the informativeness prior.

Rerunning the iterated learning model with the parameter settings b = 2, ξ = 4
(matched to the experiment), w = w∗ and ϵ = ϵ∗ (estimates from the experimental data),
we obtain the results shown in Fig. 18. The experimental results are shown for comparison:
Results for the first 10 generations are reproduced from Fig. 16 and results for the subsequent
40 generations (dashed line) are estimated based on the assumption that once a chain fully
converges it will experience no further change.9 These plots confirm that the simplicity prior

9In fact, we would expect to see a further reduction in complexity in the experimental results were it
financially practical to run all 12 chains for 50 generations. Nevertheless, the assumption that chains are
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Figure 18 . Model results under the simplicity (blue) and informativeness (red) prior using
parameters matched to and estimated from the experimental data. For comparison, the
experimental results are shown in black. Shaded areas show the 95% confidence intervals
on the mean.

yields a general pattern of results that correspond closely to the experimental evidence.
However, Fig. 18 also reveals two discrepancies between the experiment and the model

under the simplicity prior: First, the simplicity prior results in a rapid, early decrease in
complexity (unlike the experiment), and second, it results in high transmission error later
in the chains (unlike the experiment). These discrepancies are a result of our simplistic
model of noise on production: The model considers noise to be constant over generations
and does not capture the fact that some types of error are more likely than others. In the
experiment, however, it appears that noise on production is some function of how complex
a language is or how much confidence a participant has in their hypothesis, and participants
are also more likely to make certain errors over others (e.g., greater confusion at category
boundaries). These aspects of the true dynamics are not captured by our model and could
be the subject of future work.

unlikely to change once they converge is not entirely unwarranted: As can be seen in Chains B, C, and H (see
Fig. 14), once a chain fully converges, the category structure tends to be reliably conserved over subsequent
generations.
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Summary

Experiment 2 shows that, when there is only a pressure from learning, languages
evolve to become as simple as possible. Simplicity is achieved by reducing expressivity and
moving toward contiguous, one-dimensional categories that have a short description. These
results are closely aligned with the simplicity prior in the model; indeed, fitting the model
to the experimental data shows that the results are much better predicted by the simplicity
prior. This is because, to obtain a good fit under the informativeness prior, it must be
strengthened considerably, but when strengthened, the informativeness prior favors a fairly
strict four-category quadrant partition rather than fewer striped categories.

Discussion

Our model and experiments show that the iterated learning of semantic categories—
under a theoretically well motivated simplicity prior—leads to simple, relatively uninforma-
tive systems. On first glance, this result appears to run contrary to our general experience of
the world: Languages are in fact rather informative. We argue that because our model and
experiment only include one of the two principal pressures—induction without interaction—
the languages are shaped only by a pressure for simplicity. Real languages are informative
because there is also some functional reason for them to be so. As such, we expect that
by introducing a pressure from interaction (such as through a shared communicative task),
the languages will find an optimal tradeoff between simplicity and informativeness. Indeed,
this is precisely what is shown in Kirby et al. (2008, 2015) and also in experiments with-
out generational turnover that nevertheless still have pressures from both induction and
interaction (Raviv, Meyer, & Lev-Ari, 2018; Winters, Kirby, & Smith, 2018).

Nevertheless, our account still runs contrary to the empirical findings of Carstensen
et al. (2015), who found that languages become more informative under iterated learning.
Their result appears particularly robust given that it was demonstrated in two studies:
Study 1 was a reanalysis of an iterated learning experiment by J. Xu et al. (2013) and
Study 2 was a novel iterated learning experiment. What explains the gap between their
results and ours? We argue that languages that have the appearance of informativeness can
arise through iterated learning as a side-effect of applying a theoretically well-motivated
simplicity principle during learning. Indeed, Richie (2016, p. 457) recently made a theoreti-
cal argument along these lines in which he describes the emergence of informativeness from
the “basic operation of categorization” as a “happy accident.”

In Carstensen et al.’s (2015) studies, the randomly generated category systems that
initialize the chains are already maximally expressive and maximally well-balanced, but
they are not maximally compact. Therefore, the only way communicative cost can de-
crease in those experiments is through a generational increase in compactness, which may
be explained in three ways. First, participants could discover through interaction that
compact structures minimize error, and therefore switch to using such systems. This has
been demonstrated by Jäger and van Rooij (2007), for example, who showed in computer
simulations that convex (compact) color concepts can arise from a desire to minimize po-
tential error during interaction. However, this explanation can be ruled out in the case of
Carstensen et al. (2015) because neither of their studies had an interactional component.
Second, participants could have a bias for informativeness in learning—as Carstensen et al.
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(2015) propose—that is sensitive to the compactness property; the effects of this bias are
then amplified by iterated learning. Or third, participants could have some other bias—we
have proposed a domain-general simplicity bias—that also happens to favor compactness.

As we saw in the model (see Fig. 7), communicative cost is indeed expected to decrease
under a simplicity bias, at least initially, because the simplicity prior favors contiguous
categories which register as being more compact and therefore less costly; but then the loss
of expressivity comes into effect and communicative cost begins to rise again. In our iterated
learning experiment, the increase in contiguity combined with the loss of expressivity appear
to cancel each other out, resulting in flat results for communicative cost (see Fig. 16). This
raises the question as to why Carstensen et al. (2015) do not observe category loss, the
answer to which appears to be different in each of their two studies.

The experimental design of Study 1 (i.e., J. Xu et al., 2013) explicitly forces par-
ticipants to use a certain number of categories according to condition, so there can be
no category loss over generations. In Study 2, there is no bottleneck on transmission—
participants are trained on all 71 meanings; as such, category loss is unlikely, especially
over the course of just 10 generations. To illustrate this, we reran our model approximating
the parameters of Carstensen et al.’s (2015) Study 2: Agents have an unweighted (w = 1)
simplicity prior and see all of the meanings (b = 4, no bottleneck) in two exposures (ξ = 2).
Fig. 19 plots results for expressivity and communicative cost under three noise values. If
we look only at the first 10 generations, there appears to be a small but sustained decrease
in communicative cost, falling from 5 bits to around 4.7 bits,10 which suggests that the the
languages are becoming more informative. However, over longer periods of time category
loss begins to set in and the gain in informativeness is gradually eroded. This is especially
clear when the noise parameter is raised (e.g., ϵ = .1), which causes this process to happen
faster.

When category loss is impeded, the only way languages can simplify is by making cat-
egories more compact (grouping stimuli together based on similarity), which in turn makes
the languages appear more informative. Crucially, we argue that this outcome—increased
informativeness—is not due to an inductive bias to improve communicative accuracy; it
arises merely as a byproduct of increased simplicity. Or, at the very least, we argue that
this is the more parsimonious explanation. It could be argued that some mixture of the
two priors might offer a better fit to the experimental data—perhaps humans have biases
for both simplicity and informativeness. However, the point we are making in this paper
is that a simplicity bias alone can already explain the decrease in communicative cost ob-
served by Carstensen et al. (2015), and since a domain-general bias for simplicity is very
well motivated theoretically, this explanation should be preferred over positing an addi-
tional domain-specific bias for informativeness in language learning. This effectively means
we are raising the bar on the evidence required to show that learning produces informative
languages; evidence for this position must first rule out explanations from simplicity.

In this paper we treat learning independently of interaction, whereas learning often
takes place in the context of interacting—in the context of trying to accomplish some
goal. By treating the two separately, we can elucidate the unique contribution that each

10Compare with Carstensen et al. (2015, Fig. 5), where the decrease in communicative cost is similarly
small, dropping from around 5.8 bits to 5.5 bits. Their numbers are slightly different from ours because they
have more meanings (71 vs. 64) and the similarity between meanings is calculated differently.
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Figure 19 . Model results under the simplicity prior for three settings of ϵ. As in Carstensen
et al. (2015, Study 2), agents see all of the meanings (b = 4) in two exposures (ξ = 2).
When there is no bottleneck on transmission, category loss occurs slowly, making it appear
that iterated learning gives rise to informativeness over 10 generations. However, category
loss—and therefore the erosion of the informativeness gain—is inevitable if ϵ > 0. Increasing
the noise level speeds this process up.

pressure makes to the structure of language, this paper being primarily concerned with the
contribution that learning makes. That being said, considering the two pressures together
reveals the interesting way in which learning and interaction affect each other. Frank,
Goodman, Lai, and Tenenbaum (2009, p. 1228) argue that “communicators choose what
they want to say by how informative it would be about their intended meaning;” thus, the
data from which learners typically induce simple hypotheses is often explicitly designed,
by the speaker, to be informative in a given context. This suggests an important role
for pragmatics in shaping language and that the true source of informativeness may lie in
the production of data for an audience (as argued by Kirby et al., 2015) and in a given
context (as argued by Winters et al., 2018). In this sense, informativeness does derive from
a cognitive source, but that source is pragmatic reasoning, not learning.

Conclusion

In a variety of studies, Regier and colleagues have found that communication systems
find an optimal balance between simplicity and informativeness. What are the principal
forces that lead to this? One possible explanation is that induction favors simplicity, while
interaction favors informativeness; when languages are learned and used in this context,
they become optimized under the simplicity–informativeness tradeoff. Alternative accounts
place greater emphasis on the biases active during learning, suggesting that informativeness
arises from a learning principle rather than from the dynamics present in interaction.

The findings we present in this paper challenge this alternative account. We do in-
deed find that semantic categories can become slightly more informative through iterated
learning, but only in the limited sense that there is a general increase in compactness, due
to a bias for simplicity, which in turn registers as an increase in informativeness. Our model
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shows that a cognitive bias for informativeness only leads to learnable (i.e., transmissible)
category structures under a strengthened form of Regier and colleagues’ communicative
cost measure which exaggerates the compactness component. But, even then, it results in
a prediction that learners will find two-dimensional categories natural to learn (not sup-
ported by Experiment 1), which will be amplified in iterated learning (not supported by
Experiment 2). In contrast, our model predicts that a simplicity bias will lead to category
loss and contiguous categories that mark distinctions on only one dimension, findings that
are strongly supported by our second experiment.

We maintain that language is best understood as arising from the tradeoff between
simplicity and informativeness. However, when it comes to the compactness property of
semantic category systems, the tradeoff does not apply; compact categories are beneficial
to both learning and use, making it difficult to identify and test causal explanations. The
argument we have put forward in this paper rules out one potential explanation—that
compactness derives from a learning bias for informativeness—but two other potential ex-
planations remain: Are categories compact because of an inductive bias for simplicity or
because of the dynamics involved in true interaction?
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3.2 Summary of Paper 2

First and foremost, Paper 2 should be viewed as an attempt to understand – what we

perceived as – a surprising result obtained by Carstensen et al. (2015). To reiterate,

Carstensen et al. (2015) found that informative category systems can arise through

iterated learning, despite the lack of any explicit communicative pressure. Although

somewhat unclear, Carstensen et al.’s (2015) position appears to be that learners expect

languages to be informative and are therefore equipped with a bias for informative lan-

guages; the effects of this bias are then amplified by the process of iterated learning. In

particular, Carstensen et al. (2015)make reference to Fedzechkina et al. (2012), describ-

ing that work as establishing ‘the general principle that learners may alter their input in

the direction of greater efficiency’, where by ‘efficiency’ they appear to mean in terms

of communicative interaction.

Consequently, the approach we took in the paper was to formalize two possible as-

sumptions about the bias that learners bring to the table – a bias for simplicity or a bias

for informativeness – and then test the two formalizations experimentally. Doing so

revealed that a bias for simplicity offers a very strong explanation for not only our ex-

perimental results but also those of Carstensen et al. (2015), as highlighted in Fig. 19

on page 82. Specifically, Carstensen et al.’s (2015) findings can only be explained by

an increase in compactness,11 which is a hallmark feature of both simplicity and in-

formativeness; we argue, therefore, that the authors have attributed to informativeness

something that is more parsimoniously attributed to simplicity given that their studies

only include a pressure from learning. The upshot of this is that iterated learning can

indeed give rise to more informative category systems, but only in the rather limited

sense that the categories become more compact, which is not due to optimization for

communicative efficiency but due to a preference for simplicity in induction.12

Indeed, Richie (2016, p. 457) – whose article I only found during the writeup of

Paper 2 – appears to have come to the same conclusion. He says, ‘Carstensen et al.

have found that iterated learning transforms randomly partitioned color and spatial re-

11 Their initial, randomly-generated languages start out maximally expressive and maximally well-balanced,
so the only way communicative cost can decrease over time, as they observed, is through an increase in
the compactness of the categories.

12 Which itself can be motivated by cognitive economy (‘compressed representations’) or the application of
Occam’s razor (‘compressible explanations’). See Section 2.2.3.
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lation lexicons into lexicons of greater informativeness’, and after reviewing some of

Gärdenfors’s ideas on convexity, he goes on to say, ‘it may be that this particular func-

tional aspect of lexicons follows not from pressures for utilitarian communication or

categorization, but merely from the basic operation of categorization itself, making this

aspect of lexicons a “happy accident”’. In other words, the fact that compact categories

are good for functional communicative reasons may in fact be an accident, with cogni-

tive principles of categorization and learning being the real source behind such compact

structure. If correct, this casts a different light on, for example, Jäger and van Rooij’s

(2007) computer simulations, which showed that convex category structures emerge

from interaction.

One criticism that could be levelled at the paper is that the stimuli used in our ex-

periments are quite different from those used in Carstensen et al. (2015), especially in

terms of the integral–separable distinction. ‘Integral dimensions are those that combine

into relatively unanalyzable, integral wholes’ (Nosofsky, 1986, p. 40); for example, when

perceiving colour, humans integrate information about hue, saturation, and brightness

simultaneously rather than perceive the three dimensions separately. In contrast, ‘sep-

arable dimensions are highly analyzable and remain psychologically distinct when in

combination’ (Nosofsky, 1986, p. 40), the Shepard circles being classic examples of

such stimuli (the angle and size components can be perceived and categorized sepa-

rately). Both of Carstensen et al.’s (2015) studies use stimuli with integral dimensions

(colour and spatial relationships), which raises the possibility that our experimental re-

sults might not offer a fair comparison to their work. In particular, one might argue

that, if we were to adopt stimuli with integral dimensions, participants in Experiment 1

would find the quadrant partition just-as-easy or easier to learn than the striped par-

tition, and, as such, the iterated learning chains in Experiment 2 would converge on

more quadrant-like partitions.

My response to this criticism is as follows. Our model of the informativeness prior

is actually closer to the integral case because we adopt the Euclidean metric, which

is argued to be more representative of integral dimensions than separable dimensions

(Nosofsky, 1986; Shepard, 1964).13 Therefore, our model of the informativeness prior

would remain unchanged in the face of this argument and the results would therefore

13 Incidentally, switching to the Manhattan metric – argued to be a better model of separable dimensions –
yields the same overall results; the predictions of the model are indifferent to the choice of distance metric.
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be the same: The informativeness prior favours the quadrant partition (because of its

compact packing), so long as the compactness component is weighted strongly enough.

Our model of the simplicity prior would have to be revised, however, since the com-

plexity measure based on the rectangle code is suited to modelling separable dimen-

sions. It is unclear what this revised complexity measure might look like precisely, but,

for the sake of argument, let’s say it would also favour the quadrant partition (perhaps,

for example, this revised measure would be based on representing concepts as proto-

types, ultimately favouring compact packings). This would then leave us with a prob-

lem. Both priors would make the same prediction regarding the geometric structure

of the concepts, making it difficult – or even impossible – to determine which was the

better model via Experiment 1. Nevertheless, this revised simplicity prior would still

favour having fewer categories than many, so the model would still predict a loss of ex-

pressivity over generational time, which ultimately means that languages are predicted

to become less informative through iterated learning, notmore informative as suggested

by Carstensen et al. (2015). In short, our choice of separable stimuli was a deliberate

one to make it easier to distinguish between the two theoretical predictions.

To address this concern even more directly, even if we were to rerun our iterated

learning experiment with exactly the same stimuli used in Carstensen et al.’s (2015)

Study 2, our conclusions would remain the same. We would expect to see a brief ini-

tial increase in informativeness (as the concepts reorganize into simpler compact ar-

rangements), followed by a dramatic loss of informativeness as conceptual distinctions

are lost in favour of simplicity. To reiterate, the reason why this does not happen in

Carstensen et al. (2015), at least not within the first ten generations, is because they do

not apply a bottleneck on intergenerational transmission, which has the effect of slow-

ing down the loss of expressivity and making it appear as though iterated learning gives

rise to informativeness.

In the remainder of this chapter, I discuss other aspects of the project that were not

discussed in the paper. First, in Section 3.3, I describe work attempting to simulate

the process of communication between participants who took part in Experiment 1. In

Sections 3.4 and 3.5, I provide more detail on technical aspects of the model: the imple-

mentation of the rectangle code and two proposal functions used to sample from the

hypothesis space. Section 3.6 provides a proof of concept of the model-fit procedure,
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demonstrating that model parameters can successfully be recovered from simulated it-

erated learning results. And, finally, Section 3.7 concludes the chapter.

3.3 Simulating Participant Communication

In Experiment 1, we collected production and comprehension responses from partic-

ipants. Although not mentioned in the paper, one of the reasons we collected both

types of response was in order to simulate communication. In such a simulation, a par-

ticipant from the Production test type becomes a speaker who produces signals given

meanings, and a participant from the Comprehension test type becomes a listener who

infers meanings given signals. This method offers a number of advantages over run-

ning a true communication experiment. Most importantly it means that we can isolate

the two facets of communication to understand what happens on each side without the

interference that occurs when participants are continually updating their behaviour in

response to each other.

To perform these simulations, a participant from the Production version of Exper-

iment 1 (the simulated speaker) is randomly paired with a participant from the Com-

prehension version (the simulated listener); both participants had been taught the same

system (Angle-only, Size-only, or Angle & Size). An interaction then takes place in

which the simulated speaker expresses a signal for a meaning chosen at random, and

the simulated listener infers some meaning in response. More specifically, given the

randomly selected meaning thrown up by the world, the simulated speaker utters a sig-

nal according to how that meaning was labelled by the participant. On reception of

this signal, the simulated listener responds by sampling a meaning from the meanings

that the participant choose as examples of that signal. The success of the interaction is

thenmeasured as the Euclidean distance between the target and inferred meanings. An

example is shown in Fig. 3.1; see also Appendix C for individual participant languages.

Thedensity plots on the left-hand side of Fig. 3.2 show results from10,000 simulated

interactions under each of the three category systems. These results do not support the

idea that the two-dimensional, Angle & Size partition minimizes communicative error;

under this system, communicative error tended to be higher. However, the reason for

this is that participants in that condition tended to learn the system very poorly in the

first place. In other words, any advantage that the Angle & Size system had in terms of
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Figure 3.1: Illustration of a simulated interaction. The world throws up some target meaning, and
the simulated speaker (i.e. a participant who was assigned to the Production test type) utters the
signal associated with that meaning – in this case, the signal associated with the grey category. On
reception of this signal, the simulated listener (i.e. a participant who was assigned to the Compre-
hension test type) infers a meaning; the simulated listener is more likely to choose a meaning that the
participant repeatedly selected as an example of the grey category (i.e. meanings in a darker shade
of grey). In this case, the outcome of the interaction is not fully successful; the communicative error
(Euclidean distance between target and inferred meanings) is 3.16.

communicative accuracy is overpowered by the difficulty involved in learning it. Nev-

ertheless, we can still simulate the level of communicative accuracy that is expected

under each system given communicators who have a perfect grasp of the system. These

results are shown on the right-hand side of Fig. 3.2 and are based on the assumption

that listeners have a Gaussian representation of the categories – that they aremore likely

to select category central meanings.14 As predicted, communicative error is minimized

under the Angle & Size system since the categories have a more compact packing.

3.4 Complexity and the Rectangle Code

In order to implement the simplicity bias, Paper 2 adopts part of the method proposed

by Fass and Feldman (2002) who made use of the MDL principle to formulate a model

of concept induction (see Section 2.2.5). As we saw in Section 2.2.4, the MDL principle

is mathematically equivalent to Bayes’ theorem. As such, it is possible to mix an MDL-

based prior with a standard likelihood function. Our model with the simplicity bias

does exactly this; the simplicity prior is defined on page 57 as

πsim ∝ 2−complexity(L), (3.1)

14 However, even if we do not make this assumption, the same basic result holds because the quadrant par-
tition is more compact than the striped partitions.
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Figure 3.2: Density plots showing communicative error from 10,000 simulated interactions between
participants (left) and ideal agents (right). Error is measured as the Euclidean distance between in-
tended and inferred meanings. The results from the actual participants (left) do not support the idea
that the two-dimensional, Angle & Size partition minimizes communicative error; however, this is in
fact because participants in that condition tended to learn the system very poorly in the first place.
The equivalent results from the ideal agents (right) shows that communicative error is indeed mini-
mized under the Angle & Size system.

which simply transforms the binary description length (complexity) into a probability

by negative exponentiation. The likelihood of the data given a hypothesis is then cal-

culated in a more standard probabilistic way (see page 57), rather than formulating an

MDL-based likelihood (as is the case in Fass & Feldman, 2002). The reason we did not

formulate the model entirely in MDL terms is because we want to compare two prior

functions (the informativeness prior is not formulated in MDL terms), while keeping

the likelihood function constant. Alternatively, our approach to the simplicity prior can

be thought of as an approximation of Solomonoff ’s universal prior – the prior proba-

bility of a language is inversely proportional to the complexity of that language, and we

use the rectangle code as a convenient measure of complexity.

3.4.1 Deviations from Fass & Feldman’s rectangle code

The rectangle code is used to describe a category’s extension in terms of a set of rect-

angles that minimize description length (see pages 57–60). The method we use differs

from Fass and Feldman (2002) in a few small ways.

Firstly, our model and experiment allow languages to consist of up to four cate-

gories, while in Fass and Feldman (2002) there are two categories that must be learned

(ally vs. enemy) or arguably just one category that must be learned – enemy ships, the
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complement of which constitutes the ally ships (or vice versa). Thus, in Fass and Feld-

man (2002), complexity is measured on a single category, while in our case, we sum the

complexities of up to four categories to arrive at a measure of complexity for the lan-

guage as a whole. Technically, this simple summation approach is not correct. When

we formulate a description of a category, we concatenate the binary codewords of each

rectangle symbol that is needed to describe that category; since the rectangle code is

prefix-free, this description may be unambiguously decoded. However, when we for-

mulate a description of a language, the category descriptions are concatenated in a way

that cannot be decoded, since there is no separator symbol to mark where one category

ends and the next begins. In Fig. 2.6 (page 33), for example, we gloss over this issue by

highlighting the different category descriptions in different colours. We did consider

devising a description scheme for entire languages – either by introducing an additional

separator symbol or by introducing four new symbols, one to mark the start of each

category – but we felt that doing so would needlessly complicate the method with little

benefit beyond the simple summation/concatenation approach. Such a method would

essentially add a fixed number of bits for each additional category, further penalizing

languages that have more categories.

Secondly, Fass and Feldman (2002) adopt a fully continuous space in their experi-

ment, such that there is, in theory, an infinite number of stimuli that participants could

be exposed to; this continuous space is then quantized onto a 4×4 grid, and up to four

rectangles are selected that are representative of the how the participant treated the cat-

egory’s extension. For us, the continuous space was first quantized onto an 8×8 grid,

such that participants are only ever exposed to 64 particular stimuli. This was designed

to make certain other things easier, such as bottlenecking and multiple exposures (al-

though Paper 3 in the next chapter offers a method for using a fully continuous space

in iterated learning experiments). It also means that we can directly find the exact set

of rectangles required to represent a category’s extension.

3.4.2 Rectangular decomposition

Estimating the complexity of a category using the rectangle code is nontrivial. In partic-

ular, finding the shortest possible description of a category is a difficult search problem,

especially as the size of the category grows. These issues were only very briefly alluded



94 chapter 3

Figure 3.3: Five ways in which a category, modelled as a rectilinear polygon (i.e. the black area), may
be described in terms of a set of rectangles. In the first case, the category is described in terms of
36 1×1 rectangles, yielding a description length of 278.73 bits. The second case takes advantage of
the fact that fewer than 36 rectangles may be used to describe the category in a more compressed
way. For this particular category, a minimum of three rectangles is required, but multiple descriptions
are still possible, some shorter than others.

to in Footnote 3 (page 57), so in this section I described these methods more fully.

Fig. 3.3 illustrates five ways in which an example category – essentially a rectilinear

polygon – could be decomposed into a set of rectangles. Finding the minimal number

of rectangles needed to represent a polygon has practical applications in, for example,

microprocessor design and the compression of bitmap images, and has been exten-

sively studied in the field of computational geometry. Lipski Jr, Lodi, Luccio, Mugnai,

and Pagli (1979), Ohtsuki (1982), and Ferrari, Sankar, and Sklansky (1984) indepen-

dently discovered a graph-theoretic, polynomial-time algorithm to do exactly this (see

Eppstein, 2010, for a brief introduction). Roughly, this algorithm proceeds in five main

steps:

1. Identify the polygon’s concave vertices.

2. Identify any vertical or horizontal chords that link two concave vertices.

3. Identify any chords that intersect, yielding a bipartite graph since only vertical

and horizontal chords may intersect.

4. Select asmany of the chords as possible that do not intersect. This is equivalent to

finding a maximum independent set in the bipartite graph, which may be solved

by the Hopcroft–Karp algorithm (Hopcroft & Karp, 1973).

5. For any remaining concave vertices, make an arbitrary decision about which of

two slices to make.
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Figure 3.4: Illustration of the decomposition process. A category may comprise multiple chunks
(contiguous rectilinear polygons), each of which is treated independently. During decomposition, we
identify the chunk’s concave vertices and the two chords that emanate from each; we then dissect
the polygon into an initial set of rectangles, which may then be merged to form the shortest possible
description.

This algorithm yields a rectangularization that is comprised of the minimum number

of rectangles, but it will not necessarily have the shortest possible description length. In

Fig. 3.3, for example, the minimum number of rectangles is three, but the description

lengths are different depending on which one is chosen.

The method used in the paper combines some of the techniques described above

with a brute-force approach, and proceeds as follows (illustrated in Fig. 3.4):

1. Separate the concept into ‘chunks’ (contiguous rectilinear polygons), since each

chunk can be treated as a separate decomposition problem.

2. For each chunk, identify its concave vertices.

3. Identify the two chords emanating from each concave vertex, and dissect the

chunk into an initial set of rectangles.

4. Merge rectangles that share a complete edge until no furthermergers are possible

and find a rectangularization that minimizes description length.

Step 4 in this process uses a simple recursive function of the form:

Function Rectangularize(rectangle_set):
For each pair of rectangles in rectangle_set:

If the pair share an edge:
Merge the pair of rectangles into one rectangle
Calculate the description length of new_rectangle_set
If shorter than the shortest observed so far:

Store new_rectangle_set and its description length
Pass new_rectangle_set into the Rectangularize function
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Figure 3.5: Beginning with the initial dissection (left), the recursive merge algorithm explores each
sequence of merging pairs of rectangles. In this case, the algorithm goes up to three levels of recur-
sion deep, yielding five rectangularizations that are comprised of the minimum number of rectangles.
Of these, it selects a rectangularization that minimizes description length. When the algorithm hits a
previously-evaluated candidate (indicated by dashed grey lines), it may safely ignore the candidate
and its descendants, greatly reducing the number of candidates that must be evaluated.
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This recursive function exhaustively explores all possible sequences in which rectan-

gles in the initial dissection could be merged together, as illustrated in Fig. 3.5. This is

necessary, since the order in which rectangles are merged affects the ultimate outcome.

However, a memoization technique is also applied to avoid evaluating the same can-

didate solution multiple times, which has the effect of eliminating entire branches of

the search tree and greatly reducing the set of candidate rectangularizations. Even so,

the number of candidate solutions that must be considered becomes impractical with

a initial dissection of more than 20 rectangles and intractable with a initial dissection

of more than 30 rectangles. Although such cases are fairly rare in our data, where they

occur we use a beam search variant on the above algorithm in which we only recurse on

the most promising branches, which is not guaranteed to find the shortest description.

3.5 Metropolis–Hastings and the Proposal Function

To sample a language from the posterior distribution, our model uses the Metropolis–

Hastings algorithm (see pages 61–62). This is because the set of possible languages is

too large (464) to calculate the posterior probability in each case. Our implementation

of the Metropolis–Hastings algorithm proceeds in the following way:

1. Generate a random language (a random labelling of the 8×8 space).

2. Calculate the posterior probability of that language.

3. Propose a new candidate language by mutating its current state.

4. Calculate the posterior probability again.

5. Calculate the acceptance ratio, α; if α ≥ 1, accept the candidate language auto-

matically; if α < 1, accept the candidate with probability α.

6. Repeat steps 3–5 a large number of times, after which the final state is taken to

be a representative draw from the true posterior distribution.

The reason Metropolis–Hastings yields a fair draw is because, in the limit, the num-

ber of iterations spent on a given language is proportional to that language’s posterior

probability. Crucially for our purposes, Metropolis–Hastings is able to do this without
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knowledge of the true posterior probability of a language, the calculation of which in-

volves an intractable normalization term; in Metropolis–Hastings, it is only the ratio

between posterior probabilities that matters, not their true values.

As reported in the paper (page 62), the acceptance ratio α is given by

α =
p(L′|D)
p(Li|D)

· p(Li|L′)
p(L′|Li)

, (3.2)

where Li is the current state of the language and L′ is the proposed candidate. The ac-

ceptance ratio determines the probability that the algorithm will jump from the current

state to another (the probability that it will accept the candidate), and it is defined as the

product of two terms. The posterior ratio (on the left) tells us how many times more

(or less) probable one language is compared to another in the (unnormalized) posterior

distribution over languages. The proposal ratio (on the right) accounts for the baseline

probability of proposing candidate L′ given state Li. Let’s say the probability of propos-

ing candidate L′, p(L′|Li), is 0.1 and the probability of jumping back again, p(Li|L′), is

0.09; the proposal ratio is 0.09/0.1 = 0.9, which has the effect of slightly downweight-

ing the posterior ratio, making the candidate language less likely to be accepted. This is

desirable in this example case because the proposal function is slightly biased towards

proposing state L′, which needs to be accounted for. Such proposal functions are de-

scribed as asymmetric, since p(Li|L′) ̸= p(L′|Li). In developing themodel, I considered

two possible proposal functions: cell mutation, which is symmetric, and rectangle mu-

tation, which is asymmetric. In the paper, we use the asymmetric rectangle mutation

method, but to understand why we will first look at cell mutation.

3.5.1 Cell mutation

In cell mutation, a new candidate language is proposed by selecting one of the 64 cells

(meanings) at random in the 8×8 space and changing its categorymembership to one of

the other three possible categories (at random). This function is symmetric, p(Li|L′) =

p(L′|Li), because the probability of proposing any particular candidate given some cur-

rent state is always (1/64)(1/3). Therefore, the proposal ratio is equal to 1 and drops

out of Equation 3.2, simplifying to the Metropolis algorithm. Although this makes the

calculations easier and is more transparent, cell mutation is problematic because it is

prone to getting stuck in local maxima.
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Figure 3.6: There exists some true language out in the world that an agent would like to infer. How-
ever, the agent is only able to observe a limited number of data points. Despite this impoverished
dataset, an ideal learner may infer the true language by drawing on its prior knowledge of the types
of language that tend to exist. In the optimal scenario, the agent would infer the true language; how-
ever, the agent could infer a suboptimal language, especially since there is little data to rely on in the
bottom-left corner.

To illustrate this, consider the simple case shown in Fig. 3.6, where we use a 4×4

space and allow for up to two categories, rather than four. The language that exists out

in the world divides the space of meanings into two categories along the x-axis, and the

agent observes data for half of themeanings. Despite this impoverished dataset, an ideal

learner should be able to reconstruct the true language by weighing up the likelihood

of the data under candidate languages and its prior knowledge of how probable such

candidate languages are. However, given the situation illustrated in Fig. 3.6, runs of

theMetropolis–Hastings algorithm (using cell mutation as the proposal function) often

yield suboptimal solutions – languages that have high posterior probability, but not the

highest across the entire hypothesis space – because they become stuck in localmaxima.

An example of this is highlighted by Fig. 3.7, which depicts 80 iterations of the al-

gorithm using cell mutation as the proposal function. After 36 iterations, the algorithm

becomes stuck on a suboptimal language; the only way the algorithm can transition to

the globally optimal state is by first transitioning to a lower probability state. This is

because, under cell mutation, the algorithm is only able to change a single cell at a time.

In the limit, the states considered by the Metropolis–Hastings algorithm will converge

on the true posterior distribution; even if a candidate has lower posterior probability,

there is still some small probability of it being accepted, allowing the algorithm to escape

from local maxima; however, under cell mutation this can take an impractical amount

of time, especially in the more complex case of an 8×8 space with a greater number of

possible categories. In other words, cell mutation is slow-mixing, requiring a very large
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Figure 3.7: An MCMC chain under cell mutation. The first language is randomly generated and is
followed by 80 iterations of the Metropolis–Hastings algorithm. Candidate languages are depicted
in a lighter shade and are marked as accepted or rejected. In each of the candidates, a single cell
is transferred to the other category, and the candidate is accepted if this results in greater posterior
probability. The algorithm becomes stuck in a suboptimal state: The two bottom-left cells are unlikely
to become pink because the algorithm can only change one cell at a time and changing either one
of these cells makes the language more complex (highlighted by the black boxes).
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number of iterations to obtain a fair draw from the hypothesis space.

3.5.2 Rectangle mutation

My solution to the problem outlined above was to use a more complex mutation func-

tion that allows multiple cells to be changed at the same time. In rectangle mutation, a

new candidate is proposed by selecting a rectangular region at random from the space

(under the criterion that all meanings in that region must belong to a single category15)

and changing its category membership to one of the other three possible categories (at

random). The benefit of this mutation function is illustrated in Fig. 3.8; the algorithm is

no longer prone to becoming stuck in local maxima because it is able to changemultiple

cells in a single step.

On each iteration of the algorithm, we enumerate a set of mutable rectangles – rect-

angles that do not cut across a category boundary and whose category membership

may therefore be changed. Of n mutable rectangles, there is exactly one that allows

the algorithm to jump from the current language Li to the candidate language L′, so

p(L′|Li) = 1/n. Likewise, there is exactly one mutable rectangle that allows the al-

gorithm to jump back again, although the number of mutable rectangles n′ may be

different. As such, rectangle mutation is asymmetric, p(Li|L′) ̸= p(L′|Li), making it

necessary to calculate the proposal ratio in Equation 3.2, which is simply (1/n′)/(1/n).

Finally, note that, although this proposal function uses rectangles, this process is

not related to the rectangle code and decomposition methods described in the previous

section; the use of rectangles in the proposal function is merely a convenient way to

changemultiple cells at each step in order to prevent theMetropolis–Hastings algorithm

becoming stuck in local maxima. Indeed, the rectangle mutation method is used for

both the simplicity prior and the informativeness prior.

3.6 Testing the Model Fit Procedure

A crucial part of the paper is the section in which we fit the data from Experiment 2

to the model in order to determine which prior function offers the better fit (pages 76–

15 Thus, the rectangle mutation method is not biased towards introducing new rectangles (artificially mak-
ing the languages simpler) because it only modifies the category membership of rectangular regions that
already existed at the previous step.



102 chapter 3

Figure 3.8: An MCMC chain under rectangle mutation. The first language is randomly generated and
is followed by 80 iterations of the Metropolis–Hastings algorithm. Candidate languages are depicted
in a lighter shade and are marked as accepted or rejected. In each of the candidates, all cells in a
rectangular region that does not cut across a category boundary are transferred to the other category,
and the candidate is accepted if this results in greater posterior probability. Under this mutation
function, the algorithm can avoid becoming stuck in local maxima, since it is able to change the
category membership of multiple cells in a single iteration (highlighted by the black box).
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Figure 3.9: Simulated model fit used to test the model fit procedure. The iterated learning model
was run using the simplicity prior with w set to 1.0 and ε set to 0.1. The results are shown on the left.
The model fit procedure was then used to estimate the values of w and ε from the iterated learning
results. The maximum likelihood estimates were w* = 1.15 and ε* = 0.08, demonstrating that the
model fit procedure is able to recover the model parameters from the resultant data.

78). This involved a fairly complex procedure thatwas highly computationally intensive,

taking around one month to complete on a high-performance cluster. To evaluate the

performance of the procedure, I applied it to simulated data to check that the model fit

procedure was able to recover the weight and noise parameters from simulated results

where the actual values of these parameters are known.

Specifically, a simplified version of the model was run using a 4×4 space with ten

chains of ten generations – effectively 100 virtual participants. The model parameters

were set to: π = πsim, w = 1, b = 2, ξ = 2, and ε = 0.1. The results of this simulation

are depicted on the left-hand side of Fig. 3.9; as expected under a simplicity prior, ex-

pressivity, transmission error, and complexity all decrease, while communicative cost

begins to increase as categories are gradually lost. The model fit procedure was then

used to estimate the values of w and ε from the 100 virtual participants’ Din–Dout pairs.

In other words, for each of these virtual participants, we simulate what would happen

when an agent learns from the virtual participant’s Din and then seek parameter values

that maximize the likelihood of that agent producing the virtual participant’s Dout (i.e.

parameter values that maximize the probability of an agent producing the same output

as the virtual participant when given the same input as that virtual participant).

The results are shown on the right-hand side of Fig. 3.9. The maximum likelihood

estimates were w∗ ≈ 1.15 and ε∗ ≈ 0.08. These values are very similar to the true pa-

rameter values (w = 1 and ε = 0.1), suggesting that the model fit procedure is indeed
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able to recover the model parameters from the resultant data. That being said, the sim-

ulated results are much less noisy that the real world data, so it is unclear how well the

model fit procedure performed in reality. However, this test of the procedure does at

least demonstrate that the procedure should work well in principle.

3.7 Conclusion to Chapter 3

This chapter provides computational and experimental evidence to show that learning

is best understood through the lens of a simplicity principle and that, when the pro-

cess of learning is iterated, category structure becomes increasingly simple, ultimately

degenerating into its simplest possible form, the trivial partition (see Section 2.2.6). It-

erated learning amounts to a westward expansion through simplicity–informativeness

space as depicted in Fig. 3.10, which shows the evolutionary trajectories of the 12 iter-

ated learning chains in Experiment 2 (cf. Fig. 2.14 on page 47). The languages become

increasingly simple over time and only become informative to the extent that commu-

nicative cost can pick up on the emergent compactness.

The primary contribution of this project is to eliminate one of three possible expla-

nations for convex/compact category structure. The three possibilities are:

1. Language users could discover through interaction that compact structures min-

imize error and therefore switch to using such systems, as suggested by Jäger and

van Rooij (2007) and Gärdenfors (2014).

2. Language users could have a cognitive bias for informativeness, as argued by

Fedzechkina et al. (2012) and Frank and Goodman (2014); assuming this bias

is sufficiently sensitive to the compactness property, compact structure is then

emergent from iterated learning, as suggested by Carstensen et al. (2015).

3. Language users could possess a simplicity bias, through a preference for either

compressed representations (e.g. Gärdenfors, 2000; Sims, 2018) or compressible

explanations (e.g. Culbertson & Kirby, 2016; Fass & Feldman, 2002), that is am-

plified by iterated learning, as shown in the paper.

Paper 2 rules out the second of these possibilities, but possibilities one and three remain;

distinguishing between these two explanations could be the subject of future work, but
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Figure 3.10: Evolutionary trajectories through simplicity–informativeness space for each of the 12
iterated learning chains. Each chain transitions from a purple dot (a random four-category language)
to a yellow dot over the course of its evolutionary history, and the curves show smoothed trajectories
through the space. The grey dots represent randomly generated systems that are convex (left) or
random (right) with varying numbers of categories (darker grey = more categories). Together, the
grey dots approximately delimit the space of possible languages. All chains become simpler by the
final generation, pressing right up against the optimal frontier, and some chains become slightly more
‘informative’, although this is due the pressure for compactness from induction.

my own intuition is that the third option is the most promising.

This project has also made a number of methodological and practical contribu-

tions, including Python implementations of the Bayesian iterated learning model, the

rectangle code, and the communicative cost framework, and JavaScript implementa-

tions of category and iterated learning experiments, all of which are available from

https://github.com/jwcarr/shepard These may prove useful to researchers working on

related issues in the future.

Finally, despite our somewhat negative take onRegier and colleagues’ first foray into

the language evolution literature (i.e. Carstensen et al., 2015), I hope that this project

might still act as a bridge between these two bodies of work, which ultimately appear

to be converging on very similar perspectives. In particular, I think it will be crucial to

clearly define what is meant by the various jargon terms used by each.





Chapter 4

Informativeness from Interaction

Nun bewegt sich die Geschichte der Sprachen in der Diagonale zweier
Kräfte: des Bequemlichkeitstriebes, der zur Abnutzung der Laute führt,
und desDeutlichkeitstriebes, der jeneAbnutzung nicht zur Zerstörung der
Sprache ausarten lässt.16

— Georg von der Gabelentz (1891)

Von der Gabelentz was one of many early linguists to recognize that languages are

shaped by competing forces (see also Martinet, 1952; Zipf, 1949), and the compromise

he describes between Bequemlichkeitsstreben (striving for ease) andDeutlichkeitsstreben

(striving for clarity) is akin to what I have called the simplicity–informativeness trade-

off in this thesis (albeit in the domain of phonetics rather than semantics). The picture

painted at the end of the last chapter was one of degeneration: In the limit, the iterated

learning of category structure results in the trivial partition – a language that is so sim-

ple that it confers no useful benefit on its users. But as von der Gabelentz (1891, p. 251)

notes, it is the desire for clarity – or informativeness – that prevents languages from

degenerating entirely. Indeed, this is precisely what is argued by Kirby et al. (2015),

who consider ‘degenerate’ languages as the product of learning, ‘holistic’ languages as

the product of communication, and ‘compositional’ languages as the product of both

pressures combined.

So, in this chapter, we turn to communicative interaction, which keeps the pressure

16 Languages fluctuate in response to two opposing forces: The desire for ease, which leads to the erosion of
sounds, and the desire for clarity, under which such erosion is not allowed to degenerate into the destruc-
tion of the language [my translation].
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for simplicity from learning in check. In particular, this chapter demonstrates that a

pressure for informativeness from communicative interaction is not merely a pressure

for more categories (i.e. greater expressivity), but it also permits the emergence of a

higher level form of structure, compositionality.

4.1 Preface to Paper 3

Paper 3 began life asmyMSc project (Carr, 2013), supervised by SimonKirby andHan-

nah Cornish. Following substantial additional work that I completed during my PhD,

the paper was later published in Cognitive Science in May 2017 (Carr, Smith, Cornish,

& Kirby, 2017). In total the paper represents about three months’ work completed dur-

ing my MSc (May to August 2013) and around 14 months’ work completed during my

PhD (primarily September 2014 to October 2015). The following parts of the paper

were completed during my MSc:

1. The design and running of Experiments 1 and 2.

2. Parts of the Introduction and Methods sections, although most of these sections

have been entirely revised.

The goal ofmyMSc project was to test Kirby et al.’s (2008) experimental paradigmunder

a meaning space in which there is no predefined categorical structure; instead, such

categorical structure has to emerge alongside the evolution of compositional structure.

We refer to this kind of space as open-ended, which is defined in the Oxford Dictionary

of English as, ‘having no predetermined limit or boundary; allowing the formulation

of any answer, rather than a selection from a set of possible answers’. Experiments 1

and 2map closely onto the two experiments in Kirby et al. (2008) – the second of which

included an ‘artificial expressivity pressure’ tomimic the pressure from communication.

In contrast toKirby et al. (2008), wewere not able to see the emergence of compositional

structure under this artificial pressure.

Taking this work as a starting point, I developed Experiment 3 during my PhD

which implemented a true pressure for informativeness – a communicative task. In

addition, the methods used to analyse Experiment 1 and 2 were also entirely revised,

which included running separate dissimilarity rating experiments. A particularly dif-

ficult aspect of the project was finding suitable methods for analysing the structure of
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the emergent languages given that we do not actually know in advance what form that

structuremight take – that is for the participants to decide. In short, the following parts

of the paper were completed during my PhD:

1. The design and running of Experiment 3.

2. The design and running of the online dissimilarity rating experiments.

3. Development of all analytical methods, which are almost entirely new over the

approach taken in my MSc dissertation.

4. The writeup of the paper, including all figures and the supplementary material.

5. Revision of the paper following peer-review.

6. The additional material presented at the end of this chapter.

The paper is reproduced in full over the subsequent pages with the permission of

the authors, who retain copyright. The footnotes may be found on page 136, and the

citations may be looked up on pages 136–139 or in the references list at the end of this

volume. The paper makes reference to three supplementary items, which may be found

in the appendices at the end of this volume:

S1. Experimental briefs: Appendix D, page 189.

S2. Geometric measure of triangle dissimilarity: Appendix E, page 193.

S3. MDS plots for all generations in all chains: Appendix F, page 199.

All work reported in the paper is my own, including the technical development of the

experiments and analytical methods. The contributions made by my coauthors were as

follows:

KennySmith Advice on the design of Experiment 3 and the online dissimilarity rating

tasks, advice on analytical methods, and general editing of the paper.

Hannah Cornish Advice on the design of Experiments 1 and 2.

SimonKirby Advice on all three experiments and the online dissimilarity rating tasks,

advice on analytical methods, and general editing of the paper.
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Abstract

Language maps signals onto meanings through the use of two distinct types of structure.
First, the space of meanings is discretized into categories that are shared by all users of the lan-
guage. Second, the signals employed by the language are compositional: The meaning of the
whole is a function of its parts and the way in which those parts are combined. In three iterated
learning experiments using a vast, continuous, open-ended meaning space, we explore the condi-
tions under which both structured categories and structured signals emerge ex nihilo. While previ-
ous experiments have been limited to either categorical structure in meanings or compositional
structure in signals, these experiments demonstrate that when the meaning space lacks clear preex-
isting boundaries, more subtle morphological structure that lacks straightforward compositionality
—as found in natural languages—may evolve as a solution to joint pressures from learning and
communication.

Keywords: Categorization; Communication; Compositionality; Cultural evolution; Iterated
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1. Introduction

Language facilitates the division of the world into discrete, arbitrary categories
(Lupyan, Rakison, & McClelland, 2007). For example, the words bottle, cup, flask, glass,
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and mug separate the space of drinking vessels into discrete regions based on such fea-
tures as shape, material, and function; however, languages differ in the way they dis-
cretize our continuous sensory perception of the observable world (Malt, Sloman, &
Gennari, 2003). The presence of categorical structure in language reduces an intractable,
theoretically infinite set of meanings to a tractable, finite set of words that have the flexi-
bility to handle novel exemplars (Lakoff, 1987). By aligning on a particular system of
categorical meaning distinctions, members of a linguistic population can rely on their
shared understanding of the structure of the world to successfully communicate.

A second important property of language is its compositional structure: The meaning
of a sentence—at multiple levels of analysis—is a function of the meanings of its parts
and the way in which those parts are combined. For example, the meanings of the water
is in the cup and the cup is in the water are predictable from the constituent parts (six
monomorphemic words) and the word order. In language, compositional structure is a
means for optimizing the trade-off between expressivity (the number of meanings that
can be expressed) and compressibility (the degree to which the language can be reduced
to atomic units and rules of recombination) (Kirby, Tamariz, Cornish, & Smith, 2015).

This paper focuses on how these two structural properties of language (categorical and
compositional structure) can emerge simultaneously through the cultural evolutionary pro-
cesses that are argued to hold at least some explanatory power in understanding where
such structure comes from (e.g., Christiansen & Chater, 2008). Although the cultural evo-
lution of categorical (e.g., Xu, Dowman, & Griffiths, 2013) and compositional (e.g.,
Kirby, Cornish, & Smith, 2008) structure has previously been demonstrated in isolation,
we show here that structured languages can evolve where no categories have been pro-
vided by the experimenter a priori. We show this using an open-ended meaning space
and the experimental paradigm of iterated learning.

1.1. Iterated learning

Iterated learning refers to “a process in which an individual acquires a behavior by
observing a similar behavior in another individual who acquired it in the same way”
(Kirby et al., 2008, p. 10681). For example, an individual learns a language from his or
her parents, who themselves learned the language from their own parents. Taking inspira-
tion from earlier computational (e.g., Hurford, 1989; Kirby, 2002; Smith, 2004) and
experimental (e.g., Galantucci, 2005; Horner, Whiten, Flynn, & de Waal, 2006; Selten &
Warglien, 2007) studies, Kirby et al. (2008) devised an experimental paradigm for study-
ing iterated learning using adult human learners.

The basic design of an iterated learning experiment is as follows. An artificial language
(i.e., a mapping between signals and meanings) is generated. In the case of Kirby et al.
(2008), this language was a set of 27 randomly generated strings that were mapped onto
a fixed set of 27 meanings (three shapes, in one of three colors, moving in one of three
distinct patterns). Participants learn this language in a training phase and are then asked
to reproduce the language by typing in the corresponding strings for a selection of mean-
ings. The output from this test phase is then taught to a new participant, whose test out-
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put is, in turn, taught to another new participant. These experiments typically show that,
after several generations, the languages that initially started out as random evolve some
form of structure.

The simplest kind of structure that can arise from these experiments is where partici-
pants collapse all meaning distinctions. This kind of language (referred to as “degenerate”
by Kirby et al., 2015) is highly learnable because a single word can be applied to any
meaning. Similarly, systems of structure can arise where the meaning space is collapsed
into a small number of categories, each labeled by a distinct word. These kinds of struc-
ture represent one way in which languages might adapt to become easier to learn and
therefore reliably transmitted. However, while these kinds of language are highly com-
pressible, they are not expressive (see Kirby et al., 2015, for more discussion of this
trade-off).

The second experiment reported by Kirby et al. (2008) implemented a “filtering” sys-
tem that removed duplicate strings from the training material taught to the next partici-
pant in a chain, such that the training language always consisted of a set of unique
signals. This modification was intended as an analog of the pressure for expressivity that
exists in natural languages. In this experiment, small sets of meaningful, recombinable
units emerged corresponding to the dimensions of the meaning space. For example, labels
for all blue stimuli began with l- and labels for all stimuli moving in a spiral motion
ended with -pilu. By learning a handful of linguistic units and the rules for combining
them, participants were able to generate a unique label for any possible meaning combi-
nation, including meanings they had not been taught during training.

1.2. Continuous meaning spaces

Iterated learning experiments have typically relied on meaning spaces that are discrete,
finite, low dimensional, and structured by the experimenter. Kirby (2007) has described
such meaning spaces as fixed and monolithic (p. 256). For example, the meaning space
used in Kirby et al. (2008), described above, is three dimensional with each dimension
(color, shape, and motion) varying over three discrete qualities. To take another example,
the space in Smith and Wonnacott (2010) has two discrete dimensions (animal and plural-
ity) for a total of eight meanings.

More recently, iterated learning experiments have been conducted using continuous
meaning spaces (see also work with continuous signal spaces by e.g., Verhoef, 2012). Xu
et al. (2013) conducted an experiment where participants had to label a continuous color
space using between two and six color terms according to condition. The way in which a
participant discretized the space was then taught to a new participant in a chain. After 13
generations of cultural transmission, the structure of the space came to resemble the way
in which color space is typically structured by languages recorded in the World Color
Survey (Kay, Berlin, Maffi, Merrifield, & Cook, 2009). For example, in the three-term
condition, the emergent systems discretized the space into dark, light, and red categories.

Perfors and Navarro (2014) used a meaning space of squares that could vary continu-
ously in terms of color (white to black) and size (small to large). In one condition, there
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was an abrupt change in the color, such that the stimuli could be categorized into two
broad categories (light-colored squares and dark-colored squares); in another condition,
there was an abrupt change in the size of the squares. Labels for these stimuli were then
passed along a transmission chain of learners. In both conditions, the authors found that
the structure of the emergent languages came to mirror the structure of the meaning
space, primarily making color or size distinctions according to condition.

Silvey, Kirby, and Smith (2013) produced a continuous meaning space by randomly
generating four seed polygons and then gradually morphing the polygons into each other,
creating a space of 25 stimuli. The space had no obvious internal boundaries; as such,
participants showed variation in how they discretized it. The authors also conducted an
iterated learning experiment using the same meaning space (Silvey, 2014, Chapter 5). In
this experiment, each generation consisted of a pair of participants who communicated
about the stimuli using a fixed set of up to 30 words. Over five generations, the category
systems that emerged tended to make fewer distinctions and became easier to learn. Fur-
thermore, the category structures became increasingly convex, providing experimental
evidence for predictions made by G€ardenfors (2000) about semantic convexity.1

1.3. Research questions

Two important and related questions arise from prior research into iterated learning.
First, to what extent are the general findings supported under more realistic assumptions
about meaning? For example, do the results still hold when the meaning space possesses
properties that more closely reflect the natural world (e.g., high-dimensionality, open-
endedness, continuousness)? This question has been partially addressed by the work with
continuous meaning spaces described above (see also simulation work by e.g., Laskowski,
2008). The second question that arises is whether iterated learning simply returns the
structure prescribed by the experimenter, transferring it from one domain (e.g., predefined
categories in the meaning space) to another domain (e.g., the emergent structure in the
signals). Xu et al. (2013) address this issue to a certain extent; however, the participants
in their experiment are explicitly told how many categories to create—the number of cat-
egories does not arise naturally—and the participants are also likely to have strong pre-
conceptions of how to discretize color space based on the color system of their native
language (although the authors do address this); furthermore, Xu et al. (2013) do not test
for emergent signal structure, since a fixed set of labels is provided. If it is indeed the
case that iterated learning experiments simply return structure provided by the experi-
menter, is it realistic to assume that structured languages can evolve in a context where
individuals are not provided with shared categorizations of the observable world?

In this paper, we address these concerns by introducing a novel meaning space of ran-
domly generated triangle stimuli. Like previous work, our meaning space is continuous,
but crucially it is also open-ended: The structure of the space is neither provided by the
experimenter nor naturally categorizable; instead it is up to the participants to arbitrarily
decide how to categorize the space. In addition, the experiment is set up in such a way
that no two generations are tested on or trained on precisely the same stimuli, forcing
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participants to generalize from the training stimuli to the test stimuli in all cases. Finally,
the space of possible stimuli that participants can encounter is vast, forcing participants
to adopt a system of categorization. Together, these properties of our meaning space rep-
resent more realistic assumptions about the natural world, and by not defining what the
meaning dimensions are, we can test whether structure can arise in the signals and in the
meaning space simultaneously.

1.4. Outline of this paper

This paper reports three artificial language learning experiments that use the paradigm
of experimental iterated leaning described above. Experiment 1 (basic transmission) looks
at what happens when there is no pressure for expressivity. It therefore provides a base-
line for how participants respond to the open-ended meaning space. The results demon-
strate that categories emerge over generational time to discretize the space of possible
triangles. Experiment 2 (transmission with an artificial expressivity pressure) explores
whether compositional structure can emerge alongside the categorization of the meaning
space by implementing an artificial pressure for expressivity. The results of this experi-
ment were negative, suggesting that the second experiment reported by Kirby et al.
(2008) may be a special case relating to the discrete meaning space adopted therein.
Experiment 3 (transmission with communication) implements a natural expressivity pres-
sure—communication—and shows that sublexical structure can emerge when languages
are both learned and used to communicate.

2. Experiment 1: Basic transmission

Our first experiment is equivalent to the first experiment reported by Kirby et al.
(2008) and looks at what happens when languages are passed along a simple transmission
chain with no pressure for expressivity. We had two hypotheses about what would hap-
pen over generational time:

1. We expect that the languages will become increasingly easy to learn.
2. We expect to find emergent categories in the meaning space.

These outcomes were expected because the languages should adapt to the cognitive biases
of the language users, gradually becoming more learnable. Categories are a way to
increase learnability because they constitute a more compressed representation of the
meaning space.

2.1. Method

The experiment adopted the standard iterated learning paradigm described previously:
Participants were arranged into transmission chains in which the output from generation i
became the input to generation i + 1 for a given chain.
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2.1.1. Participants
Forty participants (20 female) were recruited at the University of Edinburgh. The med-

ian age was 22 years (range: 19–34). Participants were paid £5.50 for participation, and a
£20 Amazon voucher was offered as a prize for the best learner. Ethical approval was
granted for all experiments reported in this paper according to the procedures of the
School of Philosophy, Psychology, and Language Sciences at the University of Edin-
burgh. All participants provided informed consent and were offered debrief information.

2.1.2. Stimuli
Participants learned and produced artificial languages that consisted of labels paired

with triangles. To generate a triangle stimulus, three points were chosen at random in a
4809480-pixel space and joined together with black lines (2 pixels wide). The space was
enclosed in a 5009500-pixel dashed, gray bounding box. One vertex (determined ran-
domly) was marked with a black circle with a radius of eight pixels (referred to as the
orienting spot). Its function is to give the participant some context about which way the
triangle is oriented, although this was not explicitly explained to participants. The number

of stimuli2 that can be generated in this way is 3 4802

3

! "
! 6 " 1015. See Fig. 1 for some

examples of the triangle stimuli. In this paper, we use the terms dynamic set and static
set to refer to subsets from the set of possible triangles that participants may be exposed
to. These terms are explained in greater detail below; for now it suffices to say that a
unique dynamic set is generated at every generation (i.e., it changes across participants
and generations), while the static set is identical for all participants across all experi-
ments, allowing us to take measurements on a consistent set of stimuli.

The labels used as input to the first generation in a chain were generated by concate-
nating 2–4 syllables at random. A syllable consisted of a consonant from the set {d, f, k,
m, p, z} and a vowel from the set {a, i, o, u} (pronounced /ɑ i oʊ u/), yielding 24 possi-
ble syllables. The labels used as input to subsequent generations were derived from the
output of the previous generation in the chain. We used the MacinTalk speech synthesizer
(Alex voice) to produce a synthesized spoken version of each label with primary stress

Fig. 1. Examples of the triangle stimuli. The stimuli are generated by randomly selecting three points inside
a dashed, gray bounding box. One vertex is marked with a black circle.
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on the penultimate syllable. The use of spoken stimuli, alongside the written stimuli,
offers a number of benefits: (a) it makes the task more engaging, (b) if frees participants
from having to consider how to pronounce or subvocalize the words, (c) it ensures that
all participants hear the words pronounced in the same way, and (d) it ensures that partic-
ipants still hear the word even if they only pay attention to the triangle stimulus and
ignore the written label. When participants introduced new characters, those characters
were assigned phonological values consistent with English orthography.

2.1.3. Procedure
Participants were assigned to one of four chains at random until the chain reached 10

generations. Participants were told that they would be learning the language of the Flat-
landers (after Abbott, 1884), a fictional life-form that has many words for triangles. The
task was explained to participants in a written brief (see Appendix S1 in the supplemen-
tary material), the contents of which were reiterated verbally. The experiment was
divided into a training phase followed by a test phase. The training phase involved learn-
ing the labels used by the previous participant. The test phase involved providing labels
for novel triangles. The experimental procedure is illustrated in Fig. 2, and each phase is
explained in the following paragraphs.

During training, participants learned the labels that the previous participant had applied
to the 48 triangles in his or her dynamic set (i.e., the unique set of stimuli generated for
the previous participant’s test phase). Each training trial lasted 5 s. On each trial, the tri-
angle was presented first, and its associated label appeared below it after a 1 s delay to
ensure that both stimuli were attended to. The synthesized form of the label was played
through headphones at the same time as the presentation of the written form. Training
was done in three blocks. In each block, the participant was exposed to the 48 items in a

Fig. 2. (Top) The participant at generation i is trained on a set of triangle stimuli paired with labels
(dynamic set i ! 1). He or she is then tested on two novel sets of triangles: a randomly generated set
(dynamic set i) and a set that remains constant for all participants (the static set). The labels applied to the
dynamic set become the training input to generation i + 1. (Bottom) During training, the participant sees a
series of three triangles along with their associated labels. One of the three triangles is then presented again,
and the participant is prompted to type its associated label. Feedback is then given on whether the answer
was correct.
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randomized order for a total of 144 trials. After every third trial (i.e., 16 times per block,
48 times overall), the participant was shown one of the previous three triangle stimuli
again and prompted to type its label. We refer to this as a mini test. Over the course of
training, each of the 48 items was mini-tested once. Feedback on each mini test was
given in the form of a green checkmark or a red cross according to whether the partici-
pant answered correctly. If the answer was incorrect, the correct answer was shown. The
mini tests were intended as a means for holding the participant’s attention during the
training phase.

In the test phase, participants were exposed to 96 triangle stimuli, none of which they
had seen during training, and were prompted to type the associated label for each one.
The 96 stimuli consisted of the 48 stimuli in a newly generated dynamic set (which
would go on to become the training material for the subsequent participant in the chain)
and the 48 stimuli in the static set (in randomized order). The presentation of these two
sets was interleaved. The static set comprised the same set of triangles across all partici-
pants in all experiments, allowing us to take measurements on a consistent set of stimuli.
No feedback was provided during the test phase, since there is no right or wrong answer.

2.2. Results

The results for Experiment 1 are shown in Fig. 3 and are discussed in the following
sections. The raw data and analysis are available from https://github.com/jwcarr/
flatlanders.

2.2.1. Loss of expressivity
We can estimate how expressive a language is by looking at the number of words it

contains. A language with more words is potentially capable of making more meaning
distinctions. In the initial Generation-0 input, 48 unique strings were used to label the sta-
tic set, but by Generation 10, this number decreased to 6 or 7, and in Chain D, a single
word, mika, was used to describe all triangles. These results are shown in Fig. 3A. Page’s
test (Page, 1963) revealed that this decrease in the number of unique labels was signifi-
cant (L = 1,993, m = 4, n = 11, p < .001). These results show that the languages are
becoming less expressive over time.

2.2.2. Increase in learnability
We expected to find that the languages would become increasingly learnable over time.

If a language is easy to learn, a participant’s output language should more faithfully
reproduce the rules of the input language. In other words, we would expect to find a
decrease in intergenerational transmission error over time. Intergenerational transmission
error was measured by taking the mean normalized Levenshtein edit-distance3 (Leven-
shtein, 1966) between the strings used to describe items in the static set at generation i
and the corresponding strings at generation i ! 1:
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1

48

X48

m¼1

LDðsmi ; smi#1Þ
max½lenðsmi Þ; lenðsmi#1Þ&

; ð1Þ

where LD gives the Levenshtein edit-distance, s is a string, and m is a meaning from the
static set of 48 items. This measure of error is expressed in [0, 1], where 0 is perfect
alignment between consecutive generations. The results for transmission error are shown

Fig. 3. Results of Experiment 1. (A) Expressivity: number of unique strings in the static set. (B) Levels of
transmission error. (C) Levels of general structure. (D) Levels of sublexical structure. (E) Levels of shape-
based sound symbolism. The dotted lines in (C), (D), and (E) give the upper and lower 95% significance
levels; points lying outside of this interval are unlikely to be explained by chance. Some data points at the
end of Chain D are undefined due to the small number of unique strings.
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in Fig. 3B. Page’s test revealed that the decrease in transmission error was significant
(L = 1,514, m = 4, n = 10, p < .001), suggesting that the languages are becoming easier
to learn over time. Although transmission error may appear quite high by the final gener-
ation, this should not be surprising, since a score of 0 requires not only that consecutive
participants label the categories in the same way, but also that they infer the same cate-
gory boundaries; in natural languages, however, the boundaries between categories are
known to be fuzzy (Rosch, 1973).

2.2.3. Emergence of structure
Although the languages became less expressive, we expected to find that the words

would increasingly be used to categorize the space systematically. In a systematic lan-
guage, we would expect to find that similar labels refer to similar meanings, while dis-
similar labels refer to dissimilar meanings. Thus, to measure how structured the system
is, we correlate the dissimilarity between pairs of strings with the dissimilarity between
pairs of triangles for all n(n ! 1)/2 pairs. The normalized Levenshtein edit-distance was
used as a measure of dissimilarity between strings. To measure the dissimilarity between
triangles, we conducted a separate experiment in which na€ıve participants were asked to
rate the dissimilarity between pairs of triangles (see Appendix A for full details of this
experiment and Appendix S2 in the supplementary material for an alternative geometric
approach). Following previous studies (e.g., Kirby et al., 2008, 2015), the distance matri-
ces for string dissimilarity and triangle dissimilarity were correlated using the Mantel test
(Mantel, 1967), since the distances are not independent of each other making standard
parametric statistics unsuitable. The test compares the Pearson correlation for the veridi-
cal signal–meaning mapping against a distribution of Pearson correlations for permuta-
tions of the mapping, yielding a standard score (z-score). The results of this analysis are
presented in Fig. 3C. The last two generations of Chain D are undefined under this mea-
sure because there is only one word in the language. The plot shows that structure is
emerging in all chains with the exception of Chain D. Page’s test revealed a significant
increase in structure (L = 1472, m = 3, n = 11, p < .001; excluding Chain D due to miss-
ing data points).

However, this measure of structure cannot discriminate between category structure and
string-internal structure (e.g., compositionality). To test if structure was present inside the
signals, a modification was made to the measure: Rather than randomize the mapping
between signals and meanings, we randomize the mapping between the category labels
(i.e., the unique set of words in the language) and the sets of triangles they map onto,
such that the set of triangles labeled by a given word remains intact but the labels for
each category are randomly shuffled. Under this randomization method, any categorical
structure in the language remains present in the permuted mappings, so a high z-score
indicates that there must be additional structure present inside the strings themselves. The
results from this alternative approach are shown in Fig. 3D, where the majority of data
points are below the upper 95% significance level, suggesting that there is no string-inter-
nal structure in the languages of this experiment.
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To visualize the categories, the pairwise dissimilarity ratings (obtained from the na€ıve
raters; Appendix A) were passed through a multidimensional scaling (MDS) algorithm,
producing a two-dimensional representation of the meaning space.4 MDS finds an
arrangement of items in a metric space that best preserves the distances known to exist
between those items (see e.g., Borg & Groenen, 2005). The MDS solution is shown in
the plot in Fig. 4. Each dark dot represents one of the triangles in the static set; triangles
that are close together in this space were rated to be similar, and triangles that are far
apart were rated to be dissimilar. Although the dimensions of the space are somewhat
abstract, the x-axis appears to correspond to shape, while the y-axis appears to have some
correspondence with size. The space is partitioned into 48 Voronoi cells—one cell for
each triangle in the static set. Each cell encompasses all points in the space that lie closer
to the associated triangle than to any other triangle from the static set. In other words,
each Voronoi cell delimits the space of triangles that would have been labeled with the
associated string under the assumption that each item is a prototypical member of a con-
vex category (G€ardenfors, 2000).

Color is used in Fig. 4 to show information about the state of the language at Genera-
tion 10 in Chain A; similarity in color indicates similarity in word form. To determine a

Fig. 4. Categorical structure of the meaning space at Generation 10 in Chain A. The plot on the left shows
how the meaning space is discretized by the words in the language: Similarity in position represents similar-
ity in meaning; similarity in color represents similarity in word form. On the right, all triangles in the static
set are grouped by the word used to describe them (presented in the same order as the legend). Refer to the
main text for a full description and interpretation of this figure.
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color for each word, we computed the pairwise Levenshtein edit-distances between the
seven words in this particular language and derived a two-dimensional MDS solution cen-
tered on the origin. The Cartesian coordinates in this MDS space were converted to polar
coordinates and then mapped into HSV (hue, saturation, intensity value) colorimetric
space: The angular coordinate was mapped to hue and the radial coordinate (scaled in
[.5, 1] to avoid overly dark colors) was mapped to saturation; the intensity value was held
constant at 1 (see Lespinats & Fertil, 2011, for a full description of this method). The
seven words are given in the legend alongside their assigned colors. Each Voronoi cell is
colored according to the word that was used to describe its associated triangle, making it
possible to see how the space is discretized by the words. The plot is a visual approxima-
tion of the measure of structure described above: In a structured language, similar colors
will cluster into similar regions, while in an unstructured language, colors will be ran-
domly distributed across the space. The images to the right of the plot show all triangle
stimuli in the static set grouped and colored according to the word that was used to
describe them. Note that Fig. 4 combines two data sets: The structure of the meaning
space is determined by the na€ıve raters, while the color coding is determined by how the
participant at Generation 10 in Chain A labeled the triangles. Figures for all generations
in all chains can be found in Appendix S3 in the supplementary material.

Fig. 4 clearly shows that the language divides the meaning space into around five cate-
gorical regions. The center of the space (medium thin triangles) is occupied by the word
fama (light purple), with the similar word pama (dark purple) branching off into the
top-right corner (smaller thin triangles). The kazi- forms (kazizizu, kazizizui, and kazizui;
yellow–green) occupy the right-hand side of the plot and represent the extremely thin tri-
angles. Muaki (blue) mostly occupies the top left (smaller open triangles), and fod (pink)
occupies the center left (larger open triangles). With some exceptions, the five main cate-
gories tend to form single, contiguous regions (e.g., it is possible to travel between any
two examples of a fama without leaving the fama region), although the regions do not
appear to be convex (it is not always possible to travel in a straight line without passing
through another category). It is important to note, however, that the Voronoi tesselation
of MDS space only offers a two-dimensional model of participants’ underlying concep-
tual representations of the triangles and linguistic categories; the plots should therefore
not be taken as a reliable source of information about the precise structuring of the mean-
ing space.

2.2.4. The rise of sound-symbolic languages
Sound symbolism describes the phenomenon where a unit of sound goes “beyond its

linguistic function as a contrastive, non-meaning-bearing unit, to directly express some
kind of meaning” (Nuckolls, 1999, p. 228). Although we did not initially set out to test
for the emergence of sound-symbolic languages, it appeared that such patterning might
be present. For example, the word kiki (the same word used in the classic bouba/kiki
experiments; K€ohler, 1929) arose independently in several chains (Chains C and D in this
experiment and Chains E, G, and H in Experiment 2) to describe very thin or small trian-
gles. To explore the emergence of shape-based sound symbolism, we hypothesized that
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the extent to which each triangle was thin vs. equilateral would be correlated with the
presence of phonemes associated with pointy vs. round stimuli (following e.g., K€ohler,
1929; Kovic, Plunkett, & Westermann, 2010; Maurer, Pathman, & Mondloch, 2006). The
“equilateralness” of a triangle (a proxy for shape) was calculated as

a

p2=ð12
ffiffiffi
3

p
Þ
; ð2Þ

where a is the triangle’s area and p is its perimeter.5 To measure the “roundedness” of a
string, we used the sound-symbolic correspondences described by Ahlner and Zlatev
(2010, p. 310) to divide all phonemes that occurred into three categories: “round” pho-
nemes /b d g l m n oʊ cu/, which received a score of +1, “pointy” phonemes /k p t eɪ i/,
which received a score of #1, and all other phonemes, which received a score of 0. We
then correlated the total roundedness of the strings with the equilateralness of the corre-
sponding triangles and compared this correlation to a distribution of correlations for per-
mutations of the mapping between signal and meaning to arrive at a standardized
measure of shape-based sound symbolism. The results are shown in Fig. 3E; by the final
generations, there are significant levels of shape-based sound symbolism in chains A, B,
and C.

The same analysis was conducted for size-based sound symbolism using the centroid
size6 as a measure of a triangle’s size. This measure is uncorrelated with the triangle’s
shape (Bookstein, 1991, p. 97), which is particularly important given the great amount of
overlap in phonemes associated with both shape and size. Specifically, the “bigness” of a
string was measured based on the phonemes listed in Thompson and Estes (2011, p.
2396): The “big” phonemes /b d g l m w ɑ oʊ cu/ received a score of +1 and the
“small” phonemes /k p t eɪ i/ received a score of #1. While there was an effect in some
later generations, the results were quite weak. Given the lack of a strong effect for size,
only the shape-based sound symbolism results are reported in this paper.

2.2.5. Summary of Experiment 1
The results for Experiment 1 suggest that categorical structure emerges in the lan-

guages. In Chains A, B, and C, the space of possible triangles was gradually divided into a
small number of arbitrary categories that varied across chains. In Chain D, a single word
came to stand for all triangles, which is itself a form of categorical structure—in everyday
English, for example, all three-sided, two-dimensional figures can be categorized under the
single word triangle. The small number of words that emerged in the languages by the
final generations mirrors the underspecification found in the first experiment of Kirby et al.
(2008). Categories allow for languages that are more compressed and, as such, more learn-
able. For example, the language depicted in Fig. 4 can be minimally represented by seven
words, but it is presumably capable of describing any of the 6 $ 1015 triangles that could
have been generated. However, highly compressed languages are not necessarily useful in
the context of language use, where it is important to be able to disambiguate one referent
from a set of referents (see Kemp & Regier, 2012, for an example of this trade-off in the
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context of kinship categories). To test whether more expressive languages could evolve
under this unstructured, open-ended meaning space, we conducted two additional experi-
ments that include expressivity pressures.

3. Experiment 2: Transmission with an artificial expressivity pressure

Our second experiment tests whether artificially forcing participants to use expressive
languages results in compositional structure as a solution to maintaining both diversity of
forms and compressible (and therefore learnable) languages. We had three hypotheses:

1. We expect that the languages will become increasingly easy to learn.
2. We expect to find emergent categories in the meaning space.
3. We expect to find emergent structure in the signals (e.g., compositionality).

The addition of Hypothesis 3 to the two hypotheses of Experiment 1 was motivated by
Kirby et al. (2008), whose second experiment showed that forcing languages to remain
expressive results in emergent compositional structure. In our experiment, participants
could, for example, use a system where the first syllable (a, b, or c) denotes three sizes,
the second syllable (d or e) denotes broad or thin, and the third syllable (f, g, h, or i)
denotes the quadrant that the triangle is primarily located in. In this example, participants
would only need to learn nine linguistic units (syllables a–i) and the rules for combining
them but would be able to generate 3 9 2 9 4 = 24 distinct words, providing referential
precision at minimal cost in terms of the number of label components to be learned.

3.1. Method

3.1.1. Participants
Forty participants (25 female), none of whom took part in Experiment 1, were

recruited at the University of Edinburgh. The median age was 22 years (range: 18–50).
Participants were paid £5.50 for participation, and a £20 Amazon voucher was awarded
to the best learner.

3.1.2. Procedure
The procedure was identical to Experiment 1, except that participants could not use

the same string more than three times to label test items from the dynamic set (i.e., every
other test trial). We did not impose this limitation on the static set because only the
dynamic set can lead to a runaway loss of expressivity, since the way in which this set
was labeled would be passed to the next generation. The advantage of this approach is
that participants will only encounter the expressivity pressure in half of trials. The disad-
vantage is that the static set may not be entirely representative of how the participant
responded in the dynamic set. In dynamic set trials, upon attempting to enter a word that
had previously been used three times, the participant was presented with the message
“You’ve used this word too often. Please use another word.” An additional sentence was
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added to the brief to explain that this could happen (see Appendix S1 in the supplemen-
tary material). This modification to the test procedure forces the languages to remain
expressive, since the output languages passed to the next generation must contain a mini-
mum of 48 / 3 = 16 unique strings.

3.2. Results

The results of Experiment 2 are shown in Fig. 5 and are discussed in the following
sections.

3.2.1. Expressivity
The number of unique strings used to label items in the dynamic set was not able to

collapse so dramatically. Although the pressure was only applied to the dynamic set, the
number of unique strings in the static set also remained high (as shown in Fig. 5A). The
languages thus remain more expressive than Experiment 1.

3.2.2. Learnability
Fig. 5B shows that intergenerational transmission error in Experiment 2 remained rela-

tively static. Nevertheless, the results do show a significant decrease (L = 1,415, m = 4,
n = 10, p < .001) from an average of 80% error at Generation 1 down to an average of
66% error at Generation 10.

3.2.3. Structure
Although the languages in Experiment 2 are more expressive, this did not translate into

increased levels of structure. Like Experiment 1, there is no evidence for sublexical struc-
ture (Fig. 5D); however, levels of general structure are also low (Fig. 5C), with only
Chains G and H showing marginal, albeit fragile, levels of structure. Fig. 6 shows the
state of the language at Generation 8 in Chain G. In this example, which was the most
structured language to emerge, there is a clear tendency for similar labels to cluster
together. For example, labels colored green cluster down the right-hand side, dark blues
in the top left, orange–yellows on the left-hand side, and so forth. However, the structure
of the space is not as clear cut as in the case of Experiment 1, partly due to the increased
number of words. In general, however, strong levels of categorical structure did not
develop in this experiment (as indicated by Fig. 5C), and it seems that the participants
continue to make a small number of categorical distinctions by using similar (but not nec-
essarily identical) strings to label each category. For example, although the language
shown in Fig. 6 uses 14 labels, there appear to be five broad categories (colored blue/
cyan, green, magenta, orange/yellow, red/salmon; this is not simply an artifact of color
perception as these five broad categories are also clear from the strings themselves).

3.2.4. Sound symbolism
Like Experiment 1, there are significant levels of shape-based sound symbolism emerg-

ing in some of the later generations (Fig. 5E), although the effect tends to be weaker.
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3.2.5. Summary of Experiment 2
Placing a limit on the number of times a particular word could be reused allowed the

languages to remain expressive. However, this did not translate into compositional struc-
ture as hypothesized. In fact, the substantial variation in the languages prevented many of
the participants from stabilizing on a set of reliable categories. This result is at odds with
the second experiment reported by Kirby et al. (2008), where an artificial pressure was

Fig. 5. Results of Experiment 2. (A) Expressivity: number of unique strings in the static set. (B) Levels of
transmission error. (C) Levels of general structure. (D) Levels of sublexical structure. (E) Levels of shape-
based sound symbolism. The dotted lines in (C), (D), and (E) give the upper and lower 95% significance
levels; points lying outside of this interval are unlikely to be explained by chance.
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sufficient to give rise to compositional languages. While there are many possible explana-
tions for this, one possibility is that an artificial pressure for expressivity is only sufficient
in the artificial case of a small, discrete, structured meaning space.

4. Experiment 3: Transmission with communication

The restriction imposed on Experiment 2 was artificial; although participants had to
remain expressive, there was no natural reason to use a large number of distinct strings.
In our final experiment, we replaced the artificial expressivity pressure with a more eco-
logically valid pressure: At each generation, two participants must use the language to
communicate with each other. Communication introduces a natural pressure for expressiv-
ity because, in order to maximize their communicative success, a pair of participants will
need a language that is well-adapted to the discrimination of referents in a world of trian-
gles. Our hypotheses were identical to those of Experiment 2.

Fig. 6. Categorical structure of the meaning space at Generation 8 in Chain G. The plot on the left shows
how the meaning space is discretized by the words in the language: Similarity in position represents similar-
ity in meaning; similarity in color represents similarity in word form. On the right, all triangles in the static
set are grouped by the word used to describe them.
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4.1. Method

4.1.1. Participants
Eighty participants (63 female) were recruited at the University of Edinburgh, none of

whom took part in Experiments 1 or 2. The median age was 21 years (range: 18–37).
Participants were paid £8.50 for participation. The pair of participants who were most
successful at communicating were both awarded a £20 Amazon voucher to encourage
participants to be as communicative as possible with their partners.

4.1.2. Procedure
The task was explained to participants in a written brief (see Appendix S1 in the sup-

plementary material), the contents of which were reiterated verbally. The procedure fol-
lowed the same communication game paradigm introduced in other iterated learning
experiments (e.g., Kirby et al., 2015; Winters, Kirby, & Smith, 2015); this is illustrated
in Fig. 7. Sitting in separate booths, a pair of participants completed the same training
regimen used in Experiments 1 and 2. The training material presented to the two partici-
pants was identical and was derived from the dynamic set of the previous generation.
Once both participants had completed training, they entered a communication game in
which they took turns to play the role of director and matcher. The director was shown a
triangle stimulus on his or her screen and was asked to describe that triangle to his or her
partner. This label was then displayed on the matcher’s screen along with six triangles to

Fig. 7. (Top) The participants at generation i are individually trained on dynamic set i ! 1. They then com-
municate about two novel sets of triangles: a randomly generated set (dynamic set i) and a set that remains
constant for all participants (the static set). The labels applied to the dynamic set become the training input
to generation i + 1. (Bottom) During communication, the director is shown a triangle and is prompted to type
a label to describe it. The label is then displayed on the matcher’s screen along with an array of six triangles
to choose from. The matcher’s task is to click on the triangle that his or her partner is trying to communicate.
As feedback, both participants see the target triangle and the selected triangle.
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choose from (the context array). The context array contained the target triangle (in ran-
domized position) and five randomly generated distractors. The matcher’s task was to
click on the triangle that his or her partner was trying to communicate. The director and
matcher were provided with full feedback: After making a selection, the correct target in
the context array was highlighted in blue, and the director was shown the triangle that
the matcher had selected alongside the correct target. The participants were jointly
awarded 10 points for each correct match; the number of points accumulated was shown
in the bottom left corner of both screens throughout the communication game.

One of the participants (determined randomly) labeled the dynamic set and the other
labeled the static set for a total of 96 communication trials. Like the previous experi-
ments, the dynamic and static sets were labeled in alternation as the pair of participants
swapped roles. This approach means that the subsequent generation was exposed to input
from one cultural parent (the participant who labeled the dynamic set); the disadvantage
is that the static set is only representative of the participant who labeled that set.

4.2. Results

The results of Experiment 3 are shown in Fig. 8 and are discussed in the following
sections.

4.2.1. Expressivity
The expressivity results are shown in Fig. 8A. The number of unique strings is gener-

ally greater than that observed in Experiment 1, and the number of unique strings in
Chain J and the first half of Chain L is comparable to Experiment 2.

4.2.2. Learnability
The results for transmission error are shown in Fig. 8B. There is a significant decrease

(L = 1,503, m = 4, n = 10, p < .001) from an average of 80% error at Generation 1
down to an average of 50% error at Generation 10.

4.2.3. Communicative accuracy
Fig. 8C shows the number of times the communicating pair correctly identified the

target triangle out of 96 trials. The chance level of accuracy under this measure is
96 / 6 = 16 (indicated by the dotted line). All but one of the pairs scored above chance.
There was a significant increase (L = 1,321.5, m = 4, n = 10, p = .021), with later gener-
ations tending to make more correct matches. Fig. 8D shows a more fine-grained measure
of communicative accuracy: the total dissimilarity between the selected triangle and the
target triangle for all incorrect responses (dissimilarity scores were collected in a separate
experiment; see Appendix B). This gives a measure of the amount of communicative
error at each generation. There was a significant decrease (L = 1,356, m = 4, n = 10,
p = .004), which again indicates that later generations communicate more accurately.
Nevertheless, levels of communicative accuracy were quite low. The pair of participants
with the highest score was Generation 8 in Chain J (46 correct trials). That all partici-
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Fig. 8. Results of Experiment 3. (A) Expressivity: number of unique strings in the static set. (B) Levels of
transmission error. (C) Number of correct trials (the dotted line indicates chance level). (D) Communicative
error. (E) General structure. (F) Sublexical structure. (G) Shape-based sound symbolism. The dotted lines in
(E), (F), and (G) give the upper and lower 95% significance levels; points lying outside of this interval are
unlikely to be explained by chance.
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pants got less than half of trials correct indicates that the task was particularly difficult
and that there may be a ceiling on how well participants can perform, given the amount
of training they receive and the length of time they communicate for. It is also likely that
a pair of participants will not infer identical category boundaries, resulting in difficulty
classifying nonprototypical members of a given category.

4.2.4. Emergence of sublexical structure
The results for general structure are shown in Fig. 8E. Structure emerged very rapidly

and remained high over the generations (L = 1,755, m = 4, n = 11, p = .007). Further-
more, Fig. 8F reveals that sublexical structure is present in Chains J and L, peaking at
around Generation 6. To take one example, the language at Generation 6 in Chain L
comprises five main units: ba, da, fa, ma, and piku. In nearly all cases, two or three of
these units will be combined together to create a word. The way in which the words map
onto the meaning space is shown in Fig. 9. Due to the large number of words, each Voro-
noi cell in the plot has been labeled to make the system easier to comprehend.

The pattern that immediately stands out is the tendency for labels represented by
orange–yellow to cluster on the right-hand side of the plot. These triangles are labeled
with words containing piku in initial and final position. There is also a clustering of reds
and pinks corresponding to words containing piku in second or final position only. When
piku occurs only once in the word, it usually indicates triangles that are small or some-
what thin (e.g., bapiku, dapiku, fapiku, mapikuba, fadapiku). When a word begins and
ends with piku, it will usually refer to a very thin triangle with little area (e.g., piku-
fapiku, pikumapiku, pikumidpiku). In fact, the three thinnest triangles are simply labeled
pikupiku. These results suggest that reduplication, a common cross-linguistic phenomenon
(Moravcsik, 1978), may play in role in intensifying meaning, perhaps through an iconic
principle (double the piku corresponds to double the thinness; cf. Regier, 1998). Words
with da in first position usually refer to triangles which are large and open (e.g., dababa,
dabafa, damafa). However, when da occurs in second position, it often indicates that the
triangle lies on the right-hand side of the bounding box (e.g., fadaba, fadama, fadapiku,
madada, madama). Finally, words with ma in first position often correspond to triangles
whose orienting spots point to the top-left corner of the bounding box (e.g., madafa,
mafaba, mamada, mapikufa). However, these patterns are probabilistic; for each rule,
exceptions can be identified.

Perhaps more interestingly, in many words, there appear to be meaningful subparts
combined with nonmeaningful subparts. For example, the meanings of fa and ma in the
words pikufapiku and pikumapiku are unclear. These subparts may be morphological resi-
due like that found in cranberry morphs. Cranberry morphs are a class of morpheme that,
for a given language, occur in only one word; as such, it is difficult to assign meaning to
them without circular reference back to the word itself, calling into question the meaning
of the term morpheme (traditionally, the smallest unit of meaning; see Aronoff, 1976,
Chapter 2 for discussion of this issue). The classic example is the cran in the word cran-
berry, which has no independent meaning; instead it serves to distinguish cranberries
from other types of berry. Similarly, the fa and ma in pikufapiku and pikumapiku may
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express the idea, “I’m of the type piku...piku, but slightly different in a way I won’t
explicitly specify.” For instance, the fa type of piku...piku is slightly longer and thinner
than the ma type, but this correspondence does not appear to be productive across the
language as a whole.

4.2.5. Sound symbolism
Fig. 8G shows levels of shape-based sound symbolism, which are very strong and tend

to emerge early in the chains. This is likely because the pair of participants can rely on a
shared, implicit understanding of common sound-symbolic patterns to more accurately
communicate with each other.

4.2.6. Summary of Experiment 3
Introducing communication created a natural pressure for participants to be expressive.

Expressivity remained higher than Experiment 1 and comparable to Experiment 2.
Despite this, the learnability of the languages also remained high. Participants in at least
two of the chains managed the pressures for expressivity and learnability by utilizing

Fig. 9. Categorical structure of the meaning space at Generation 6 in Chain L. The plot on the left shows
how the meaning space is discretized by the words in the language: Similarity in position represents similar-
ity in meaning; similarity in color represents similarity in word form. On the right, all triangles in the static
set are grouped by the word used to describe them.
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string-internal structure that leverages the structure in the meaning space and sound-sym-
bolic associations. Thus, in this experiment, where there was a pressure to maintain the
diversity of signals due to the natural pressure from expressivity in addition to the pres-
sure for learnability associated with transmission, sublexical structure emerged in addition
to the general categorical structure observed in the previous experiments.

5. Discussion

In the Introduction, we claimed that our meaning space is a useful model of the natural
world because the space of triangles is vast, continuous, and open-ended, properties that
are present in objects that occur in the real world. For example, the vast set of items
referred to by the English word cup forms a conceptual category that has fuzzy bound-
aries with neighboring concepts, such as bowl, glass, and pitcher (Labov, 1973). The
dimensions of the conceptual space in which cups are represented may be either discrete
(e.g., the presence or absence of a handle) or continuous (e.g., its size or shape). Simi-
larly, our space of triangles potentially has both discrete (e.g., the quadrant in which the
triangle is located) and continuous (e.g., the size or rotation of the triangle) dimensions
with boundaries that are not well defined. Furthermore, our participants are unlikely to
have strong preconceptions about how the space of triangles should be discretized. While
geometrical terminology exists to describe the shape of triangles (equilateral, isosceles,
and scalene) and their angles (acute, obtuse, and right-angled), these terms are not partic-
ularly useful in the context of our experimental paradigm, since they discretize the space
of triangles based on artificial mathematical properties rather than naturally perceived fea-
tures.

In Experiment 1, the languages that emerged discretized the meaning space into a
small number of categories. Although the precise boundaries between categories varied
from one chain to the next, the categories typically encoded the shape and size of the tri-
angles; other features that could have been encoded—location or rotation in the plane—
tended to be disregarded by the participants (see also Section 2 of Appendix S2 in the
supplementary material). In fact, the na€ıve raters broadly responded to the space in the
same way, rating the dissimilarity between triangles based on their shape and size proper-
ties (as evidenced by the dimensions of the MDS space). This is congruent with Landau,
Smith, and Jones (1988), who showed that, when learning words, both children and adults
are biased toward the shape of stimuli over their color, texture, or size. The process of
collapsing categorical distinctions was taken to the extreme in one of the chains where a
single word was used for all triangles by the final two generations. The process of col-
lapsing categories is a valid strategy for maximizing compressibility (and therefore learn-
ability), but the emergent languages in Experiment 1 were not expressive and would
therefore be ill-suited to a world where one needed to reliably discriminate referents.

In Experiment 2, we placed a limit on the number of times a word could be reused,
imposing an artificial expressivity pressure on the languages. This was intended to be
equivalent to the pressure imposed in Kirby et al.’s (2008) second experiment. While the
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number of unique strings remained high in Experiment 2, there was no evidence of the
sublexical structure one would expect to find in a compositional system. In fact, the large
amount of variation within each language even prevented stabilization on a set of cate-
gories in the meaning space. This result is strikingly different from the results reported
by Kirby et al. (2008), who observed robust compositional structure under such a pres-
sure. One explanation for this could be that, when the experimenter provides participants
with a structured meaning space with unambiguous internal boundaries, single partici-
pants can simply transfer part of the meaning space structure onto the signals, cumula-
tively giving rise to compositional systems over generational time. In contrast, when
participants are presented with an unstructured meaning space, as is the case here, the
process of deriving structured signals becomes nontrivial. That being said, the artificial
pressure used here is slightly different from that used by Kirby et al. (2008): The pressure
involves direct instruction to participants—asking them to use different words when an
arbitrary limit is reached—and does not maintain a one-to-one mapping between signal
and meaning (a signal can map to up to three meanings in this experiment). The effects
of such subtle differences are unclear and could be the subject of future work.

In Experiment 3, we added communication, which acts as a natural pressure for
expressivity. In this experiment, each generation consisted of communicating participants
who had the shared goal of maximizing their communicative accuracy. To achieve this, a
language would be required that could encode a sufficient number of feature distinctions
in order for the matching participant to correctly determine the target triangle. Like
Experiment 2, expressivity remained high, but, unlike Experiment 2, the learnability of
the languages also remained comparatively high and our measure of structure revealed
that string-internal structure was present in two of the four chains. Thus, in this experi-
ment, where there was a natural pressure to maintain a diverse set of signals, sublexical
structure emerged in addition to the categorical structure observed in Experiment 1.

Nevertheless, it is difficult to describe the emergent sublexical structure as composi-
tional, at least in terms of how compositionality is traditionally defined. A standard, the-
ory-neutral definition of compositionality states that, “the meaning of a complex
expression is determined by its structure and the meanings of its constituents” (Szab!o,
2013). However, in our qualitative analysis of the emergent languages, it proved difficult
to write simple grammars that could describe how to create composite strings with com-
posite meanings because many of the mappings between form and meaning were highly
probabilistic. In addition, in the exit questionnaire, many of our participants were unable
to describe how the languages worked, suggesting instead that there were weak statistical
tendencies in how form mapped onto meaning; one participant (Chain I, Generation 8,
Subject A) remarked, “I think we had vague ideas of the template for each word, but we
were pretty inconsistent.”

However, this is precisely how the lexicons of natural languages work. While polymor-
phemic words are compositional (either through inflection, washed = wash + -ed, or
derivation, happiness = happy + -ness), monomorphemic words cannot be decomposed
into smaller meaningful units. Furthermore, the extent to which polymorphemic words
are compositional is also questionable. For example, Aronoff (1976, 2007) takes the view
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that lexemes, even polymorphemic ones, are largely idiosyncratic. Sentences need to be
highly compositional to provide language with its productivity, and the production of sen-
tences is certainly a generative process, leading to combinations of words that have never
been uttered before (although cf. Wray & Perkins, 2000). In contrast, the lexicon is stored
in memory and many polymorphemic words have idiosyncratic meanings that have
drifted from the sum of the parts from which they were originally derived. Aronoff there-
fore views polymorphemic lexemes as being only weakly compositional. While Aronoff’s
position may be a radical alternative to the classic view, it provides an alternative per-
spective on compositionality (or lack thereof) at the level of the lexeme.

The second linguistic property relevant to our results is de Saussure’s (1959) arbitrari-
ness of the sign, which states that the relationship between form and meaning is arbitrary
and established only by convention among language users. In the context of language
evolution, the importance of the arbitrariness of the sign was further solidified by Hockett
(1960), who counted it among the design features of language. However, there are nota-
ble exceptions to this principle, which Cuskley and Kirby (2013) break down into con-
ventional and sensory sound symbolism.7

Conventional sound symbolism refers to correspondences between signal and meaning
that are set up by the historical relatedness of words. Such correspondences have been
shown to contribute to the overall systematicity of natural languages using corpus-analyti-
cal techniques in both English (Monaghan, Shillcock, Christiansen, & Kirby, 2014) and
Spanish (Tamariz, 2008). One example of this, which seems likely to contribute to such
statistical correspondences, is phonesthesia—the phenomenon where monomorphemic
words contain correspondences between sound and meaning. For example, English words
beginning with sn- often have meanings relating to the nose (e.g., sneeze, sniff, snore,
snout, etc.). Such words may possess shared etymologies that are obfuscated by the current
state of the language and/or may be adopted precisely because of the correspondences they
share with preexisting words in the lexicon. Bergen (2004) and Hutchins (1998) have
shown in psycholinguistic experiments that the English phonesthemes have a psychologi-
cal reality in the minds of native speakers, suggesting that they should be considered in a
similar light to regular morphemes (see Kwon & Round, 2015, for some discussion).

The second type, sensory sound symbolism, involves correspondences between signal
and meaning motivated by cross-modal or intramodal cognitive biases (see Lockwood &
Dingemanse, 2015, for a review). This type of sound symbolism is particularly relevant
to this study because it has been shown to facilitate word learning (e.g., Monaghan,
Christiansen, & Fitneva, 2011; Nielsen & Rendall, 2012; Nygaard, Cook, & Namy, 2009;
Parault & Schwanenflugel, 2006) and is frequently advanced as an explanation for the
origin of language. We found significant levels of shape-based sound symbolism in the
emergent languages. There was also some evidence for size-based sound symbolism in
some of the languages using a conservative measure of size.

Compositionality and the arbitrariness of the sign are fundamental principles of lan-
guage. However, recent research, briefly reviewed above, is suggestive of a more nuanced
picture of language structure that our results are aligned with: Sound symbolic structure
emerged in all three of our experiments, and, in Experiment 3, we found evidence of sub-
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lexical structure that was not compositional in the traditional sense. In the early genera-
tions of Experiment 3, the pairs of participants shared little common ground, so they
made use of iconic strategies, such as sound symbolism or reduplication. This gave rise
to sublexical structure that peaked in each of the chains between Generation 2 and Gener-
ation 6. This sublexical structure then gradually started to drop away, perhaps—as Aron-
off might argue—because the meanings of the words begin to drift from their
compositional origins as “the sign gravitates to the word” (Aronoff, 1976, p. 14). That is
to say, the words may be compositional early on and then start to lose this property as
they begin to evolve idiosyncratic meanings not predictable from their component parts,
just as in natural language where polymorphemic words cannot always be easily decom-
posed into smaller units of meaning.8 We suggest that this aspect of compositionality, as
well as a more complete understanding of how iterated learning builds morphemes out of
noise—via an interim stage of statistical tendencies—is ripe for future exploration.

6. Conclusion

Our meaning space pushes the boundaries on the experimental study of iterated learn-
ing by avoiding several simplifications that previous experiments have made. Our mean-
ing space is continuous, unstructured by the experimenter, vast in magnitude, and we do
not prompt participants to make a certain number of categorical distinctions. Despite
these features of the experimental setup, our first experiment showed that cultural evolu-
tion can deliver languages that categorize the meaning space under pressure from learn-
ability. These languages had no string-internal structure but showed signs of containing
sensory sound symbolic patterning. In our second experiment, and unlike previous stud-
ies, combining the pressure for learnability with an artificial pressure for expressivity did
not lead to signals with internal structure. In our final experiment, we found that combin-
ing a pressure for learnability with a pressure for expressivity derived from a genuine
communicative task gave rise to languages that use both categorization and string-internal
structure to be both learnable and expressive. Unlike previous work, this emergent struc-
ture was sublexical rather than morphosyntactic, and as such bears similarities to certain
aspects of natural lexicons, combining both conventional and sensory sound symbolism.
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Notes

1. Although we do not test these predictions in this paper, we do use the notion of
semantic convexity in our analyses. This notion states that “a subset C [i.e., a cate-
gory] of a conceptual space S [i.e., a meaning space] is said to be convex if, for all
points x and y in C, all points between x and y are also in C” (G€ardenfors, 2000, p.
69). In other words, the members of a category form a single region of a meaning
space in which it is possible to travel between any two members in a straight line
without leaving the region.

2. The number of possible triangles in a finite space is uncountably infinite given the
set of real numbers. However, the number of triangle stimuli in our meaning space
is limited by the resolution of the display and ultimately by what participants are
able to perceive as distinct. The latter is difficult to precisely quantify, but for the
purpose of this paper, the space can be assumed to be vast in magnitude.

3. The minimum number of insertions, deletions, and substitutions that must be made
to one string to transform it into another. The distance is normalized by dividing
by the length of the longer string.

4. Correlation between the original dissimilarity ratings and the corresponding Eucli-
dean distances in MDS space: .83. Stress-1 value: .25.

5. The denominator in Eq. 2 is the upper bound on the area of a triangle of given
perimeter. When the ratio is 1, the triangle has maximum area given its perimeter
and is therefore equilateral; as the ratio approaches 0, the triangle becomes increas-
ingly thin and pointed.

6. Square root of the sum of squared distances from the centroid of the triangle to its
vertices.

7. Cf. Dingemanse, Blasi, Lupyan, Christiansen, and Monaghan (2015), who refer to
these notions under the terms “systematicity” and “iconicity.”

8. For example, the meaning of reduce is not predictable from re- and -duce, despite
the fact that these morphemes appear in other English words: receive, refer, repel;
deduce, induce, produce (Aronoff, 1976). However, the Latin etymology of these
words indicates that they were indeed compositional in the past: reducere = to lead
back, referre = to carry back, repellere = to drive back, etc.
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online in the supporting information tab for this article:

Appendix S1. Experimental briefs
Appendix S2. Geometric measure of triangle dissimi-

larity
Appendix S3. MDS plots for all generations in all

chains

Appendix A: Online dissimilarity rating task

To measure the dissimilarity between pairs of triangles, we conducted an online experi-
ment on the crowdsourcing platform CrowdFlower. A standard rating procedure was
adopted, which is considered to be more reliable than other, more economical methods
(Giordano et al., 2011). We collected dissimilarity ratings for the 1,128 pairs of triangles
in the static set. The pairs of stimuli were randomly divided into 8 subsets of 141 pairs.
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This was repeated 12 times, resulting in 96 subsets, each to be assigned to an individual
participant. We paid a flat rate of $0.50 for each of the 96 participants who completed
the task. To access the task, participants had to correctly answer three simple entry ques-
tions, which evaluated their ability to understand basic English instructions; anyone who
failed to answer these questions correctly was not allowed to enter the task. The partici-
pants were told that they would see pairs of triangles and would have to “rate how simi-
lar the two triangles are” using a slider control. The main part of the task was preceded
by a 1 min familiarization stage in which participants were shown all 48 triangles in the
static set to give them a sense of the maximum and minimum dissimilarity.

On each trial, the pair of triangles were presented side by side in 5009500-pixel
dashed, gray bounding boxes. The slider control was located below the triangles and was
labeled with very similar on one end and very different on the other; the direction of the
scale was determined randomly for each participant. The slider had 1,001 levels of granu-
larity, where 0 is maximally similar and 1,000 is maximally dissimilar. The participant
could not proceed to the next trial until at least 3 s had passed and the slider control had
been moved. After giving a rating, the participant had to press the enter key, which
removed the triangles and slider from the screen, and then click a button labeled next,
which was centered at the top of the screen; this forced the participant to move the
mouse cursor to the top of the screen where it would be approximately equidistant from
all points on the slider on the following trial.

There were six practice trials at the beginning of the experiment and three reliability
trials randomly interspersed among the normal trials (for a total of 150 trials). In reliabil-
ity trials, participants were shown identical triangles and should therefore have rated them
with a low dissimilarity rating; this was included to monitor participants’ reliability. Due
to a browser compatibility issue, a small portion of ratings (5.7%) were not recorded.
After excluding these ratings, an average of 11.32 (SD: 1.48) independent ratings were
collected for each pair of triangle stimuli. The median dissimilarity rating (on the 1,000-
point scale) for reliability trials was 0, suggesting that participants were attending to the
stimuli. Two participants were excluded because their mean ratings of reliability pairs
were > 100.

The remaining 94 participants’ ratings were normalized in [0, 1] such that the ratings
would use the entire width of the scale. The normalized ratings were then averaged
together to produce a mean dissimilarity rating for each pair of triangles. Individual rater
agreement was measured by correlating an individual participant’s ratings with the
corresponding mean dissimilarity ratings for the 94 participants as a whole. Mean rater
agreement was .7 (range: .22–.88). The three participants whose rater agreement was < .4
were then excluded, leaving a total of 91 participants.

The final distance matrix used in the main analysis was produced by averaging
together the normalized ratings for the final 91 participants. There was an average of
10.72 (SD: 1.55) independent ratings per pair. Interrater reliability among the 91 partici-
pants was measured using Krippendorff’s alpha coefficient (Krippendorff, 1970), which is
applicable where multiple raters each rate incomplete but overlapping subsets of the full
data set. The value of this statistic was .41, which is quite low; however, this should not
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be surprising given that participants were not instructed on specifically how to judge the
dissimilarity between triangles, so some diversity in ratings was to be expected.

Appendix B: Dissimilarity judgments between target and selected triangles in
Experiment 3

Unless otherwise noted, this online experiment was identical to that described in
Appendix A above. The 80 participants who took part in Experiment 3 selected the
wrong triangle from the context array a total of 2,653 times. For a more granular measure
of communicative error, we wanted to quantify the dissimilarity between the target and
selected triangles in each of these cases. The 2,653 pairs were randomly divided into 21
subsets (14 subsets of 126 pairs and 7 subsets of 127 pairs). This was repeated 10 times,
resulting in 210 subsets to be assigned to individual participants. We paid a flat rate of
$0.45 for each of the 184 participants who completed the task. There were six practice
trials at the beginning and three reliability trials randomly interspersed among the normal
trials (for a total of 135 or 136 trials).

The median number of independent ratings collected for each pair was 9 (range:
4–10). The median dissimilarity rating for reliability trials was 0. One participant was
excluded because they rated all triangle pairs as having maximum dissimilarity. An addi-
tional 32 participants were excluded because their mean ratings of reliability pairs were
> 100. The remaining 151 participants’ ratings were normalized and averaged together to
produce a mean dissimilarity rating for each pair of triangles. Mean rater agreement was
.69 (range: .36–.87). The three participants whose rater agreement was < .4 were then
excluded, leaving a total of 148 participants. The final dissimilarity ratings used in the
main analysis were produced by averaging together the normalized ratings given by the
final 148 participants. The mean number of independent ratings per pair of triangles was
7.04 (SD: 1.4). Krippendorff’s alpha for interrater reliability was .37.

J. W. Carr et al. / Cognitive Science 41 (2017) 923



142 chapter 4

4.2 Summary of Paper 3

Paper 3 makes primarily two contributions. The first is its development of a fully con-

tinuous, open-ended meaning space. Other work in the literature has typically quan-

tized the continuous space onto a grid (e.g. Canini et al., 2014; Perfors & Navarro, 2014;

Silvey et al., 2015; J. Xu et al., 2013) because the iterated learning paradigm demands a

design in which system-widemeasurements are taken on a consistent set of stimuli. But

quantization has its limitations. Recall that the Shepard circles in Paper 2 were quan-

tized onto an 8×8 grid; it seems plausible that, after 160 training trials, many of the

participants will have realized that they were only being exposed to just eight particular

size and angle distinctions, which may prompt them to use, for example, rule-based,

as opposed to say prototype-based, learning strategies. In Paper 3 we get around this

issue by fixing a ‘static set’ of triangles which every participant labels and which may be

used formeasuring the variables of interest to us, while allowing the languages to evolve

through the constantly changing ‘dynamic sets’ (see Fig. 2 on page 116). In addition,

the complex structure of the space is such that there are no preestablished semantic

categories, obvious dimensions, or natural kinds – these emerge through the process of

iterated learning (see Lupyan, 2017, for recent experimental work on the human con-

ceptualization of triangles).

The second contribution of the paper is its demonstration that genuine communica-

tive interaction is required for the emergence of higher-level compositional structure.

The paper can therefore be viewed as a replication of Kirby et al. (2015) but with the

additional feature that the underlying semantic categories emerge alongside the com-

positional structure. While previous work in the iterated learning literature has treated

categorical and compositional structure separately, Paper 3 is the first – to our knowl-

edge – to show how the two arise together. In addition, the paper shows how artificial

languages can adapt in unexpected ways; in designing the experiments, we had not an-

ticipated, for example, that sound symbolic structure might emerge as a partial solution

to the problem of making languages more learnable.17

In the remainder of this chapter, I discuss aspects of the project not discussed in

the paper. First, in Section 4.3 I discuss the structure measures in more detail and

17 Indeed, my later experiments reported in Paper 2 were designed to prevent the emergence of sound sym-
bolic structure by randomizing the signal–category mapping at every generation (see page 70).
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demonstrate in an artificial test-case that they are indeed able to pick up on emergent

categorical and compositional structure. Section 4.4 reports some errata in relation to

Page’s test and provides recomputed statistics following the same methods used in Pa-

per 2. In Section 4.5, I reanalyse the data in terms of simplicity and informativeness

and show that the pressure from learning leads to simpler, less informative languages

in comparison to the pressure from communication. Section 4.6 concludes the chapter.

4.3 Structure and the Mantel Test

The method used to measure structure in Paper 3 (page 119) has become the de facto

standard in the iterated learning literature. Shillcock, Kirby, McDonald, and Brew

(2001) first used the method to demonstrate that the phonological distances between

monosyllabic English words are correlated with the semantic distances between those

words; words that are phonologically similar tend to have similar meanings (see also

Monaghan, Shillcock, Christiansen, & Kirby, 2014; Tamariz, 2008). In the iterated

learning literature, the method was first used in early computational simulations (e.g.

Brighton, Smith, & Kirby, 2005) and later in the experimental analogues of those simu-

lations (e.g. Kirby et al., 2008, 2015). However, the method does in fact have an earlier

provenance in the form of the Mantel test (Mantel, 1967), which is used to calculate the

significance of the correlation between two distance matrices.18

Our measure of structure correlates the pairwise distances between words with the

corresponding pairwise distances betweenmeanings. An illustration of this is provided

in Fig. 4.1. In this hypothetical example, the veridical Pearson correlation between

the meaning distances and string distances is 0.5 (dashed line). The mapping between

meanings and strings is then randomized, and the correlation is remeasured; this is then

repeated some large number of times (100,000 in the paper), yielding a distribution of

correlation coefficients centred around zero, as shown by the solid curve in the graph on

the left. The distribution is normally distributed around zero because, under random

string–meaning mappings, there is, on average, no correlation between meaning simi-

larity and string similarity. The level of structure in the language is then estimated by

18 The standard approach to obtaining a p-value for a correlation coefficient is not suitable in the case of
correlating two distance matrices because the correlation of two such matrices violates the assumption
that each datapoint is independent of the others; moving a single point in some underlying space affects
not one but many of the distances in the distance matrix (see Cornish, 2011, p. 91–94).



144 chapter 4

Figure 4.1: Examples of the regular structure measure (left) and the sublexical structure measure
(right) applied to the same hypothetical dataset. Dashed lines show the veridical correlation between
string distances and meaning distances (r = 0.5). The correlation under a sample of random string–
meaning mappings is shown by the solid curve on the left; when the mapping between signal and
meaning is randomized there is, on average, no correlation (r ≈ 0.0). Under the sublexical structure
measure, the mapping is randomized between category labels and categories, such that the sample
languages retain any categorical structure, resulting in a higher correlation (r ≈ 0.2). If the veridical is
significantly greater than the sample, the language must contain general or sublexical structure.

how far the veridical correlation is from the mean of the Monte-Carlo sample correla-

tions, computed as a z-score. Since the veridical correlation is significantly greater than

the distribution of the Monte-Carlo permutations (here, z = 5), there must be system-

atic structure present in the language; words with similar form have similar meaning.

However, this measure is not able to disambiguate between categorical structure in

the meaning space and structure internal to the strings themselves. Paper 3 introduces

a novel method for distinguishing between these two forms of structure, which is illus-

trated on the right-hand side of Fig. 4.1. Under this method, rather than randomize

the mapping between all 48 meanings and their corresponding signals, the mapping is

randomized between category labels (i.e. the unique set of words in the language) and

their corresponding categories (i.e. sets of meanings). In other words, the triangles that

were grouped together into a particular category remain together but are assigned one

of the strings at random. As such, the randomized mappings in the Monte-Carlo sam-

ple retain any categorical structure, yielding a distribution of correlation coefficients

with a mean that is greater than zero (0.2 in the example). However, since the veridical

correlation is still significantly greater than the distribution of Monte-Carlo permuta-
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tions (z = 3), there must be additional structure present in the strings themselves. We

refer to this additional structure as sublexical structure.

To demonstrate that this measure works, I first coded each of the 48 triangles in

the static set as being either above average (0) or below average (1) in terms of location,

rotation, size, and shape (using the measures described in Appendix E), which resulted

in 15 ‘natural kinds’ (triangles that are similar in terms of all four features) as shown in

Table 4.1. I then generated two languages: a categorical language in which each of the

15 natural kinds is labelled by a unique string, and a compositional language in which

each of the feature values is represented by a particular letter. For example, triangles that

are bigger than average have the letter t in third position, and triangles that are smaller

than average have the letter p in third position. The two languages use the exact same

set of words, but under the compositional language, the words are concatenated from a

set of units that have a systematic relationship with particular features of the triangles.

Using the geometric measure of triangle dissimilarity described in Appendix E to

provide the semantic distances, the categorical language has a structure score of 7.54

(there is a significant level of structure) but a sublexical structure score of 1.11 (there

is no significant level of sublexical structure); in contrast, the compositional language

has a structure score of 20.81 (there is a significant level of structure) and a sublexical

structure score of 7.01 (there is also a significant level of sublexical structure). This

demonstrates that themeasures can, in principle, detect the kinds of structure wewould

expect to find.

4.4 Problems with Page’s Test: Some Errata

Page’s test is a nonparametric test of monotonically ordered differences in rank (Page,

1963). Until recently, Page’s test was commonly used in iterated learning studies to

test for cumulativity – an increasing (or decreasing) trend over generational time (e.g.

Caldwell & Millen, 2008; Kirby et al., 2015; Smith & Wonnacott, 2010; Verhoef, 2012).

However, subsequent to the publication of Paper 3, Stadler (2017) pointed out that the

use of Page’s test in iterated learning studies is highly problematic because Page’s test is

not – and was never designed to be – a test of trend, and a single increase (or decrease)

from one generation to the next may be sufficient to reject the null hypothesis. This is

especially problematic given that, in typical iterated learning experiments, the ‘zeroth
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Table 4.1: Binary feature values of the 48 triangles in the static set, sorted into ‘natural kinds’, and
then labelled by a categorical or compositional language

Triangle Location Rotation Size Shape Kind Cat. language Comp. language
5 0 0 0 0 1 napi kati
29 0 0 0 0 1 napi kati
12 0 0 0 0 1 napi kati
11 0 0 0 0 1 napi kati
37 0 0 0 0 1 napi kati
34 0 0 0 0 1 napi kati
16 0 0 0 0 1 napi kati
2 0 0 0 1 2 kopu katu
7 0 0 0 1 2 kopu katu
48 0 0 1 0 3 nati kapi
33 0 0 1 1 4 nopu kapu
8 0 0 1 1 4 nopu kapu
23 0 0 1 1 4 nopu kapu
21 0 0 1 1 4 nopu kapu
27 0 1 0 0 5 napu koti
6 0 1 0 0 5 napu koti
26 0 1 0 0 5 napu koti
36 0 1 1 0 6 notu kopi
30 0 1 1 0 6 notu kopi
9 0 1 1 1 7 natu kopu
19 0 1 1 1 7 natu kopu
25 1 0 0 0 8 koti nati
43 1 0 0 0 8 koti nati
32 1 0 0 1 9 noti natu
42 1 0 0 1 9 noti natu
4 1 0 1 0 10 kapi napi
38 1 0 1 1 11 nopi napu
31 1 0 1 1 11 nopi napu
13 1 0 1 1 11 nopi napu
17 1 0 1 1 11 nopi napu
41 1 1 0 0 12 kapu noti
46 1 1 0 0 12 kapu noti
20 1 1 0 0 12 kapu noti
3 1 1 0 0 12 kapu noti
22 1 1 0 1 13 katu notu
1 1 1 0 1 13 katu notu
39 1 1 0 1 13 katu notu
24 1 1 0 1 13 katu notu
14 1 1 0 1 13 katu notu
45 1 1 1 0 14 kati nopi
47 1 1 1 0 14 kati nopi
15 1 1 1 0 14 kati nopi
28 1 1 1 0 14 kati nopi
10 1 1 1 0 14 kati nopi
44 1 1 1 0 14 kati nopi
18 1 1 1 1 15 kopi nopu
35 1 1 1 1 15 kopi nopu
40 1 1 1 1 15 kopi nopu
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Table 4.2: Page’s test statistics reported in Paper 3 and their LMER equivalents

Page Variable Page’s test result LMER model comparison result
117 Exp. 1, expressivity L = 1993, p < .001 β = -3.92 ± 0.58, χ2 = 11.04, p < .001
119 Exp. 1, trans. error L = 1514, p < .001 β = -0.066 ± 0.01, χ2 = 8.86, p = .003
119 Exp. 1, structure L = 1472, p < .001 β = 0.75 ± 0.32, χ2 = 4.07, p = .044
124 Exp. 2, trans. error L = 1415, p < .001 β = -0.01 ± 0.00, χ2 = 8.34, p = .004
128 Exp. 3, trans. error L = 1503, p < .001 β = -0.04 ± 0.01, χ2 = 11.8, p < .001
128 Exp. 3, comm. acc. L = 1321.5, p = .021 β = 0.75 ± 0.39, χ2 = 3.2, p = .074
128 Exp. 3, comm. error L = 1356, p = .004 β = -0.8 ± 0.33, χ2 = 4.28, p = .039
130 Exp. 3, sub. struct. L = 1755, p = .007 β = -0.1 ± 0.11, χ2 = 0.8, p = .371

generation’ is often markedly different from the data obtained from actual participants,

making a single generational change in the hypothesized direction very likely. By sim-

ulating random datasets in which there are four chains and 11 generations (as is the

case in Paper 3), such that generation 0 is always lower than generation 1, we find that

a significant result at α = .05 is obtained by chance about 47% of the time!

I have rerun all eight statistics reported in the paper using the same method de-

scribed in Paper 2 (see page 74), which Winter and Wieling (2016) recommend for

iterated learning experiments. Specifically, a linear mixed-effects regression analysis

was used to test for an effect of generation on a particular variable of interest with chain

as a random effect and by-chain random slopes for the effect of generation. P-values

were obtained by likelihood ratio tests of the full model against a null model without the

effect in question. These statistical results are given in Table 4.2, alongside the original

Page’s test statistics reported in the paper and the page numbers for reference.

Of these new statistical results, twowere not significant (those highlighted in bold in

Table 4.2). Firstly, communicative accuracy in Experiment 3 was not found to increase

with generation. This revised finding is not especially important to the interpretation

of the paper because we also provided a more fine-grained measure of communica-

tive accuracy based on the dissimilarity between the director’s target triangle and the

matcher’s selected triangle, and under this more precise measure, there is a significant

decrease in communicative error, as shown in the table. Secondly, sublexical structure

in Experiment 3 was not found to increase with generation, which on inspection of the

plot on page 129 is not especially surprising given that sublexical structure only really

emerged in two of the four chains, and even then it was gradually eroded after genera-

tion 6. Nevertheless, this is not fatal to the overall interpretation of the paper because it
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Figure 4.2: For the purpose of measuring complexity using the rectangle code, the languages from
Paper 3 may be transformed from the continuous space to a discrete 8×6 grid, which approximates
the structure of the meaning space. The colour coding in this example is for Generation 10 in Chain A.

only suggests that there was no cumulative effect on sublexical structure; the more im-

portant point, however, is that sublexical structure did emerge in Experiment 3, while

it did not in Experiment 1: Iterated learning alone gives rise to categorical structure,

while the addition of a communicative task can give rise to sublexical structure.

4.5 Simplicity and Informativeness

At the end of Chapter 2, I suggested that research on the evolution of semantic cat-

egory systems can benefit from an approach that unifies the measures used by Kirby

and colleagues and Regier and colleagues (see Fig. 2.15). As we have seen, Paper 3 in-

cluded a communicative task in Experiment 3, so we would expect to find that, under

pressures from both induction and interaction, the languages will gravitate towards the

optimal frontier. Although the experiments in Paper 3 were not designed with measur-

ing complexity and communicative cost in mind, it is nevertheless interesting to see if

this prediction is borne out in the results. To perform these analyses, the 48 meanings

in the static set were mapped onto a discrete 8×6 grid which approximates the contin-

uous MDS solution, making it possible to approximate the complexity of the languages

in the rectangle code. For example, Fig. 4.2 illustrates the language from Generation 10

in Chain A (depicted in the paper on page 120) and its mapping onto the discrete grid.

The results are shown in Fig. 4.3. Complexity decreases with generation in Experi-

ment 1 (transmission-only; β = −36.74±9.05, χ2 = 7.48, p = .006) andExperiment 3
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Figure 4.3: Complexity and communicative cost in Experiment 1 (transmission-only; left) and Exper-
iment 3 (transmission with communication; right).

(transmission with communication; β = −14.57 ± 5.47, χ2 = 4.85, p = .028). Over

generations, the category systems become simpler, although this is to be expected given

that the category systems start out maximally complex (48 categories). However, the

languages in Experiment 1 becomemore simple, as predicted by the fact that there is no

communicative component, while the languages in Experiment 3 remain a little more

complex. Communicative cost (bottom of Fig. 4.3) increases with generation in Exper-

iment 1 (β = 0.3 ± 0.07, χ2 = 7.67, p = .006) and Experiment 3 (β = 0.15 ± 0.05,

χ2 = 5.06, p = .025); again, this is to be expected given that the languages start out

maximally informative (48 categories), but the increase is more pronounced in Exper-

iment 1, while the languages in Experiment 3 remain somewhat more informative (es-

pecially Chains J and L).

4.6 Conclusion to Chapter 4

This chapter provides experimental evidence to show that communicative interaction

is the driving force behind informative languages structure. Fig. 4.3 shows that iterated
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Figure 4.4: Evolutionary trajectories through simplicity–informativeness space for Experiment 1 (top)
and Experiment 3 (bottom). Each chain transitions from a purple dot (a random 48-category language)
to a yellow dot over ten generations, and the curves show smoothed trajectories through the space.
The grey dots represent randomly generated systems that are convex (left) or random (right) with
varying numbers of categories (darker grey =more categories). Together, the grey dots approximately
delimit the space of possible languages. All chains become simpler and less informative, but less so
in Experiment 3, which includes an interactional component.
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learning alone tends towards greater simplicity – indeed, one of the chains reached the

trivial partition after nine generations becoming maximally costly to use. In compari-

son, when the pressure from interaction is included, the languages remain more com-

plex, but also more informative. Informativeness is maintained by retaining as many

unique signals as possible, but these signals develop a statistical form of compositional

structure, which is more compressible, in response to the learning pressure that is also

present.

As argued in this thesis (see Fig. 2.14 on page 47), the combination of both pres-

sures should amount to a movement towards the optimal frontier as the languages find

an optimal balance between simplicity on the one hand and informativeness on the

other. Fig. 4.4 shows the evolutionary trajectories that the iterated learning chains take

in simplicity–informativeness space in Experiment 1 (transmission-only; top) and Ex-

periment 3 (transmission with communication; bottom). Of course, since the initial

randomly-generated languages were maximally complex and maximally informative

(every meaning had its own randomly generated category label), looking at the data in

this way is somewhat limited. Nevertheless, it is possible to see that the languages have

a less dramatic westwards expansion when the communicative pressure is present.
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Conclusion

Seldom do more than a few of nature’s secrets give way at one time.

— Claude Shannon (1956)

To a certain extent I have done in this thesis precisely what Shannon told us not to do:

Jump on the information theory bandwagon. In Chapter 2, we saw how the two prin-

cipal pressures that shape language structure, induction and interaction – or equally the

twohalves of the simplicity–informativeness tradeoff–maybe rendered in information-

theoretic terms:—

First, while Bayes’ theorem tells us that a rational learner ought to weigh up the

likelihood and prior, it is information theory – or rather its progeny, algorithmic com-

plexity theory and theMDLprinciple – that offers insight into how that prior ought to be

set. A learner who has no particular expectations in some domain – for example, learn-

ing that this kind of circle is a zix and that kind of circle is a zox – should nevertheless

place greater weight on simple explanations because, ultimately, ‘nature does nothing

in vain’, so simple explanations are inherently more probable (Chater & Vitányi, 2007;

Culbertson & Kirby, 2016; Li & Vitányi, 2008; Rissanen, 1978; Solomonoff, 1964a).

And second, in terms of communicative interaction, information theory has some-

thing to contribute once again. Regier and colleagues’ communicative cost framework

formalizes the precision with which a language or category system is able to convey

meaning, capturing expected information loss during the transmission ofmeaning from

one mind to another through the lossy medium of language. Communicative cost can

153
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be seen as quantifying what Shannon andWeaver (1949, p. 4) called ‘the semantic prob-

lem’: ‘How precisely do the transmitted symbols convey the desired meaning?’ More-

over, Regier and colleagues’ body of work has shown that language is optimized not

just in terms of informativeness (communicative cost) but also in terms of simplicity

(complexity) in a wide variety of domains: kinship (Kemp & Regier, 2012), spatial rela-

tionships (Khetarpal et al., 2013), numeral systems (Y. Xu&Regier, 2014), colour terms

(Regier et al., 2015), and container names (Y. Xu et al., 2016).

So perhaps, then, Shannon was overly pessimistic when he said that information

theory cannot be expected to shed light on more than a few of nature’s secrets; it cer-

tainly seems to me that the language and cognitive sciences have benefited greatly from

its simple, elegant formalism and predictive power over the past 70 years.

5.1 Recapitulation

Chapter 1 introduced some of the key ideas behind this thesis. Firstly, although lan-

guage is manifestly underpinned by the unique configuration of human biology, lan-

guages are also socially learned, used, and transmitted, and their structure develops,

at least in part, in response to these processes. Moreover, the structures that languages

adopt through cultural evolution modify the biological fitness landscape, resulting in

coevolutionary dynamics (see e.g. Christiansen & Chater, 2008; de Boer & Thompson,

2018; Richerson & Boyd, 2005). Ascertaining how these things fit together is one of

the core problems that the language sciences are engaged in, and the argument put for-

ward in this thesis is that the human learning mechanism has a tendency to simplify

language and iron out its irregularities, while the need for precise communication (or

indeed precise internal representation) prevents that process of simplification from get-

ting out of hand. Many of the structural properties we recognize in natural languages

and conceptual systems emerge from this neverending tug of war. The iterated learning

framework has provided a successful paradigm in which these kinds of issues can be ex-

plored, particularly in terms of the contribution made by human inductive reasoning.

More recent work in this literature has combined iterated learning with communication

games, providing a simple but powerful model of the core factors shaping language.

Chapter 2 took these evolutionary ideas as a starting point and asked, how do in-

ductive reasoning and communicative interaction shape the way humans partition the
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world into discrete categories? The chapter attempted an answer to this question in

four sections. Section 2.1 outlined what we mean by concepts and categories and de-

scribed some of the key ideas in the literature about what makes a good category sys-

tem (see also Douven & Gärdenfors, in press, for more thoughts on this). Section 2.2

formally established the link between learning and simplicity (measured in terms of

complexity or compression) and showed that simple category systems are comprised of

few categories with compact structure. Section 2.3 then formally established the link

between communication and informativeness (measured as communicative cost) and

showed that informative category systems are comprised of many categories with com-

pact structure. Finally, in Section 2.4, we brought this all together under the simplicity–

informativeness tradeoff: Semantic category systems evolve to find an optimal balance

primarily in terms of expressivity – the number of categories the system contains – but

the compactness property can only ever increase since it is favoured by both pressures.

Chapter 3 applied these theoretical ideas to a concrete issue that arose in the liter-

ature – namely, the surprising result reported by Carstensen et al. (2015). The authors

contend, contrary to prior work, that learning favours informativeness. Ultimately, we

argue that the authors have come to this conclusion by attributing to informativeness

something that is more parsimoniously attributed to simplicity. Aside from this, how-

ever, Chapter 3 made several other contributions. We saw how finding a compressed

encoding of a system of concepts accurately predicts (a) how easily that system will

be learned and (b) the kinds of system that will emerge from iterated learning over

generational time, replicating a slew of findings from both the category learning and

iterated learning literatures. For example, we find that one-dimensional concepts are

easier to learn than two-dimensional ones; we find that intergenerational information

loss – brought about through the bottleneck, lack of exposures, or noise – contributes

to greater convergence on the prior bias; and we find that the human inductive bias is

best characterized by a preference for simplicity. Each on its own is not a new finding,

but as a whole this project provides a foundation on which future work on the evolution

of language and semantic category systems can build.

Finally, Chapter 4 showedhowcommunicative interaction constrains iterated learn-

ing, preventing the process of degeneration – convergence to an inductive bias for sim-

plicity – from getting out of hand; when participants must use a language to accomplish



156 chapter 5

some goal, they impart a pressure for informativeness. The first experiment showed that

it is learning that delivers the basic hallmark properties of conceptual structure, category

sparsity and compactness, while the third experiment showed that it is communication

that delivers expressivity by means of higher-level forms of structure that optimize for

the simplicity–informativeness tradeoff. This higher-level form of structure is compo-

sitionality, which is both simple and informative, although the form of compositional

structure we identified showed only statistical tendencies towards a complete composi-

tional system. In the process of demonstrating this, the project also highlighted that the

iterated learning paradigm can be extended to more realistic meaning spaces in which

the semantic categories are not provided for free by the experimenter, thereby ruling

out one potential criticism of the paradigm.

5.2 Future directions

There are primarily two directions I would like to take the work presented in this thesis.

The first direction would seek to better understand the human inductive bias, and the

effects it has on cultural phenomena, by direct comparison to another primate species.

Little has been said in this thesis about animal studies, but clearly there is something

in the human biological endowment that sets us apart in terms of language, and the

only way to elucidate what that might be is through comparison with other species.

One promising line of enquiry comes from work by Claidière et al. (2014), who have

successfully applied the iterated learning paradigm to a nonhuman primate species, the

Guinea baboon. In this study, baboons completed a pattern reproduction task on touch

screen computers, with the production output of one animal becoming the training

input to the next animal in an iterated learning chain. Using this procedure, Claidière

et al. (2014) provided the first evidence that a nonhuman primate species can exhibit

three fundamental aspects of cultural evolution: a progressive increase in performance,

the emergence of systematic structure, and the presence of lineage specificity.

However, the study was concerned with the general effect of iterated learning and

did not specifically study structural properties relating to language. Understanding the

extent to which the basic structural properties of language can be explained by cul-

tural evolutionary dynamics would tell us whether the emergence of language is depen-

dent on possessing the right cognitive endowment or possessing the right socio-cultural
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mechanisms required in use and transmission. For example, direct replication of the

iterated learning experiment in Paper 2 in a nonhuman primate would inform us that

culturally defined categories can emerge in another species provided that the animals

are given the right cultural scaffolding.

The second direction I would like to take the work presented hereinwould be to fur-

ther refine the model introduced in Paper 2. This could include relatively small refine-

ments, such as generalizing the framework to account for both separable and integral

meaning dimensions, or larger scale development, such as integrating a model of com-

municative interaction. Currently, the iterated learningmodel I presented only includes

learning and does not make predictions about what would happen when agents must

communicate. This could add interesting dynamics to themodel because we should not

forget that learning usually takes place in the context of communication; children learn

languagewhile engaged in communicative interactionwith caregivers, not through pas-

sive exposure to meaning–signal pairs. In other words, the agents would learn not just

that some signal maps to some meaning but also about how effective signals are in elic-

iting certain responses, providing a doorway for informativeness. Work by Frank and

Goodman (2012, 2014) might provide a useful starting point in modelling this aspect

of language in a agent-based framework. However, it might also be possible to take

a deeper, more mathematical approach to modelling the simplicity–informativeness

tradeoff, as recently suggested by Zaslavsky, Kemp, Regier, and Tishby (2018), who for-

malize the tradeoff in terms of the information bottleneck principle (Shamir, Sabato,

& Tishby, 2010; Tishby, Pereira, & Bialek, 1999), an information-theoretic approach to

finding the best tradeoff between accuracy and complexity.

5.3 Final thoughts

Biology underpins language, but languages themselves are culturally learned, used, and

transmitted, and their structural properties adapt in response to various cultural pres-

sures. This thesis has shown that inductive reasoning, under awell-motivated prior bias,

acts as a pressure for simple and, ultimately, degenerate languages; this is counteracted,

however, by communicative interaction which provides the pressure for informative-

ness. It is only in the presence of both pressures that structured languages emerge; the

more we talk, the more precise our languages become in communicating thought.
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Paper 2, Supplement S2: All model

results

Over the subsequent pages I provide model results under 48 combinations of the bot-

tleneck b, exposure level ξ, and noise level ε. As in Paper 2, results for expressivity,

transmission error, complexity, and communicative cost are given under the three pri-

ors (simplicity in blue, informativeness in red, and strong informativeness in dashed

red); see pages 64–65 for additional information. Each line represents the mean over

100 chains. The results reveal how greater intergenerational information loss (a tighter

bottleneck, fewer exposures, or noisier productions) leads to greater convergence to the

prior bias – lower complexity in the case of the simplicity bias and lower cost in the case

of the strong informativeness bias. These results can also be exploredmore interactively

at https://joncarr.net/p/shepard/
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Appendix B

Paper 2, Supplement S3: Participant

exclusion and attrition

On every trial, the participant had to click one of four response buttons (or one of 64

response stimuli in the case of the Comprehension condition in Experiment 1). The

mapping between labels/stimuli and buttons was randomized on every trial, such that

the participant would have to look over the buttons to find they one theywanted. There-

fore, we would expect to find that buttons (but not necessarily labels/stimuli) are being

clicked at random. If button clicks appear to be nonrandom, this would suggest that the

participant is repeatedly clicking the same button without regard to the label (or stim-

ulus). To check for this, I looked at the entropy of button clicks (see Fig. B.1). Random

button clicking would result in entropy of log 4 = 2 bits (Production) or log 64 = 6 bits

(Comprehension).

Under the Production test type of Experiment 1, there were three clear outliers

(highlighted in red), so these participants were excluded and new participants were re-

cruited to take their place (all three had been assigned to the Size-only category system).

Under the Comprehension test type, we might expect to find a little less randomness

in button clicks; participants might hover their cursor around one particular area of

the stimulus picker and click the closest stimulus that belongs to the target category,

resulting in some buttons being used more frequently than others. Since the results

indicated no strong outliers, we retained all participants. In Experiment 2, which is

production-based, we preset the exclusion criterion to 1.75 bits (shown by the dashed

177
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Figure B.1: Button-click entropy of participants in Experiment 1 (Production and Comprehension)
and Experiment 2. Each cross is an individual participant. A total of four participants were excluded,
highlighted in red.

Table B.1: Participant numbers by condition in Experiment 1 (recruited – terminated – excluded)

Production Comprehension TOTAL
Angle-only 44 – 4 – 0 = 40 46 – 6 – 0 = 40 90 – 10 – 0 = 80
Size–only 50 – 7 – 3 = 40 70 – 30 – 0 = 40 120 – 37 – 3 = 80
Angle & Size 41 – 1 – 0 = 40 58 – 18 – 0 = 40 99 – 19 – 0 = 80
TOTAL 135 – 12 – 3 = 120 174 – 54 – 0 = 120 309 – 66 – 3 = 240

red line in Fig. B.1), which was set based on the Production results of Experiment 1.

Any participant whose button-click entropy was below this value was excluded auto-

matically and a new participant was automatically recruited to fill that generation in

the chain. This was applied in just one instance (highlighted in red). Therefore, a total

of four participants (0.85%) were excluded across the two Experiments. Three from the

Production/Size-only condition and one from the iterated learning experiment.

It has been shown that online experiments may be adversely affected by high par-

ticipant attrition (i.e. termination of the experiment before it is completed), especially

where attrition may be linked to experimental condition (Zhou & Fishbach, 2016). In

our experiments, for example, participants may be more likely to terminate the experi-

ment if they are assigned to a conditionwhere the system is harder to learn, which could

have the effect of making difficult-to-learn systems appear easier than they actually are.

A total of 309 participants began Experiment 1. Of these, 66 terminated the experi-

ment prior to completing it, so their data were erased because they were deemed to have

withdrawn consent. Participant numbers by condition are presented in Table B.1. Par-

ticipants who terminated the experiment were disproportionately likely to have been

assigned to the Size-only system or the Comprehension test type. This means that our
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results may, for example, overestimate how easy the Size-only system was to learn, un-

der the assumption that participants are more likely to terminate a task if they find it

difficult. A total of 273 participants began Experiment 2. Of these, 48 participants

terminated the experiment prior to completing it. Participants who decided to termi-

nate either experiment had the facility to leave a comment explaining why, but none

availed of this, making it difficult to establish their motivations. On average, partici-

pants terminated the experiments after around 3 minutes, and around 40% of them did

not progress beyond the instructions page.





Appendix C

Paper 2, Supplement S4: Individual

participant results in Experiment 1

Over the subsequent pages, I provide categorization results from each of the 240 par-

ticipants who took part in Experiment 1 (see pages 67–72). Each page gives the results

from the 40 participants in a given condition. Participants were assigned to one of three

category systems (Angle-only, Size-only, orAngle& Size) and one of two test types (Pro-

duction or Comprehension). Colours indicate the category a particular stimulus was

assigned to by the participant. In the case of the Comprehension results, each partici-

pant’s results are separated out across four grids and the lightness of the colour indicates

how many times that stimulus was selected as an example of the category. In general,

participants learning the Angle-only system reproduced that system very accurately;

participants learning the Size-only system were less accurate; and participants learning

the Angle & Size system had quite low accuracy.
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Appendix D

Paper 3, Supplement S1:

Experimental briefs

Over the following three pages, I provide the briefing materials that were given to par-

ticipants in each of the three experiments reported in Paper 3. This briefing information

was accompanied by oral explanation of the task, and participants has the opportunity

to ask questions.
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Flatlanders experiment

Brief
You have just entered a parallel universe that has only two dimensions! 
This curious place is inhabited by an intelligent life form, the Flatlanders, 
who are obsessed with two-dimensional shapes and have a huge 
vocabulary just for triangles alone.

Your task is to learn the words that the Flatlanders use for triangles to 
help us establish contact with these strange beings. It’s a pretty difficult 
task — but we think you’re the right person for the job!

Stage 1: Training
You will see a series of triangles, one by one. Each triangle will be 
presented with its name in the Flatlander language. The name will also 
be pronounced by the computer to help you learn it. After every third 
triangle, you will see one of those three triangles again and you must 
type in its name. This stage is designed to help you learn the language.

Stage 2: Test
Again, you will see a series of triangles. For each triangle, simply type in 
what you think it’s called based on the training you completed in stage 1. 
The test is designed to assess how well you’ve learned the Flatlander 
language, and there’s a £20 Amazon voucher for whoever learns it best.

You will learn a lot of words very quickly, and it may be difficult to take it 
all in. But don’t panic! The most important thing is to maintain good 
relations with the Flatlanders by giving it your best shot. You must type in 
an answer for every triangle, but it’s okay to guess if you’re unsure. Even 
if you get the word wrong, you’ll still get points for getting the word 
partially correct.

Good luck!
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Flatlanders experiment

Brief
You have just entered a parallel universe that has only two dimensions! 
This curious place is inhabited by an intelligent life form, the Flatlanders, 
who are obsessed with two-dimensional shapes and have a huge 
vocabulary just for triangles alone.

Your task is to learn the words that the Flatlanders use for triangles to 
help us establish contact with these strange beings. It’s a pretty difficult 
task — but we think you’re the right person for the job!

Stage 1: Training
You will see a series of triangles, one by one. Each triangle will be 
presented with its name in the Flatlander language. The name will also 
be pronounced by the computer to help you learn it. After every third 
triangle, you will see one of those three triangles again and you must 
type in its name. This stage is designed to help you learn the language.

Stage 2: Test
Again, you will see a series of triangles. For each triangle, simply type in 
what you think it’s called based on the training you completed in stage 1. 
However, if you use the same word too many times, you will see a 
message asking you to use a different word. The test is designed to 
assess how well you’ve learned the Flatlander language, and there’s a 
£20 Amazon voucher for whoever learns it best.

You will learn a lot of words very quickly, and it may be difficult to take it 
all in. But don’t panic! The most important thing is to maintain good 
relations with the Flatlanders by giving it your best shot. You must type in 
an answer for every triangle, but it’s okay to guess if you’re unsure. Even 
if you get the word wrong, you’ll still get points for getting the word 
partially correct.

Good luck!
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Flatlanders experiment 

Brief 
You have just entered a parallel universe that has only two dimensions! This 
curious place is inhabited by an intelligent life form, the Flatlanders, who are 
obsessed with two-dimensional shapes and have a huge vocabulary just for 
triangles.


Your task is to learn the words that the Flatlanders use for triangles to help us 
establish contact with these strange beings. It’s a pretty difficult task — but we 
think you’re the right person for the job!


Stage 1: Training 
You will see a series of triangles, one by one. Each triangle will be presented 
with its name in the Flatlander language. The name will also be pronounced by 
the computer to help you learn it. After every third triangle, you will see one of 
the previous three triangles again and you must type in its name. This stage is 
designed to help you learn the language.


Stage 2: Communication 
You and your partner will communicate using the language you learned in 
Stage 1. When it’s your turn to communicate, you’ll be presented with a 
triangle. You will type in the word for this triangle and send it to your partner. 
Your partner will then see a selection of six triangles and they’ll have to figure 
out which triangle you’re talking about. You and your partner will take turns at 
being the communicator and matcher.


Important: you must only communicate using the Flatlander language that you 
and your partner learned in Stage 1. You must not use English or any other 
language to communicate with your partner. The supervisor will be monitoring 
your communications during the experiment.


You will learn a lot of words very quickly during the training stage, and it may 
be difficult to take it all in. But don’t panic! The most important thing is to 
maintain good relations with the Flatlanders by giving it your best shot. It’s 
okay to guess if you’re unsure. Go with your instinct and type in a word that 
feels right. Your partner may still be able to identify it, even if it’s only partially 
correct.


The pair who communicate most successfully using the Flatlander language 
will each receive a £20 Amazon voucher.


Good luck!



Appendix E

Paper 3, Supplement S2: Geometric

measure of triangle dissimilarity

The dissimilarity ratings provided by the naive raters reflect the cognitive perceptions

that humans have about triangles. However, the participants in the main experiments

may have held different perceptual representations of the triangles from those held by

the naive raters: The participants in our main experiments would have had a notion

of triangle dissimilarity in the context of using a language to describe or communicate

about the triangles. Here I provide an alternative geometric measure of triangle dissim-

ilarity that explicitly considers a range of possible meaning dimensions, some of which

may not have been considered important by the naive raters.

Four features were selected that participants could potentially use to conceptual-

ize and communicate about the triangles (see Table E.1). For each of the features, the

distance was computed between every pair of triangles in the static set, yielding four

Table E.1: Four features and the corresponding distance measures between triangles

Feature Distance measure
Location Euclidean distance between centroids
Orientation Shortest angular distance by orienting spota

Shape Absolute difference in equilateralness ratio (Equation 2 on page 122)
Size Absolute difference in centroid size (Note 6 on page 136)

aOrientation is defined as the angular coordinate of the orienting spot when the tri-
angle is centred on the origin. The shortest angular distance between two triangles
is the shorter of the clockwise or counterclockwise angular distances.
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Figure E.1: The most similar and most dissimilar pairs of triangles in the static set based on the
geometric measure of dissimilarity (top) and the ratings of the naive raters (bottom). Note that, under
the geometric measure, all four features are taken into account, while the human raters appear to be
ignoring the properties of location and orientation.

distance matrices. The matrices were converted to ranks (in order to remove the distri-

butional effects peculiar to each metric), summed together, and then normalized in the

interval [0, 1]. A pair of triangles that are similar in terms of all four features will have

a score close to 0 (with 0 representing identity), while a pair of triangles that are dis-

similar in terms of all four features will have a score close to 1. Fig. E.1 shows the most

similar and most dissimilar pairs of triangle stimuli based on this geometric measure

(top) and based on the ratings from the naive raters (bottom) for comparison.

There was a strong correlation between the scores produced from this geometric

approach and the mean normalized dissimilarity ratings provided by the naive raters

(r = .49, n = 1128, p < .001; Mantel test). The results for structure using this mea-

sure are given in Fig. E.2. The general trends are congruent with the equivalent results

produced using the ratings from naive raters. However, the structure scores tend to be

lower under the geometric approach, suggesting that it does not fully capture the way

in which the triangles are perceived. For this reason, we consider the structure results

based on human ratings to be canonical and present this alternative method in support
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Figure E.2: Levels of structure in Experiment 1, Experiment 2, and Experiment 3 using the geometric
measure of triangle dissimilarity rather than human dissimilarity ratings. The results are congruent
with those presented in the paper, although the structure scores are generally lower.

of our conclusions.

This geometric measure of triangle dissimilarity described above allows us to iso-

late particular geometric properties in order to determine which features were being

encoded by the participants in the main experiments. To perform this analysis, we cor-

related the pairwise string dissimilarity scores with all combinations of the four geomet-

ric features described in Table E.1 to see which combination would yield the strongest

correlation. For four features, there are 15 combinations to consider, yielding 15 dif-

ferent types of language that could potentially arise. These language types are listed

in Table E.2 along with reference numbers; for example, a Type 13 language encodes

location, shape, and size.

The results of this analysis are given in Table E.3; for all generations, the table gives

the type number for the combination of features that resulted in the strongest correla-

tion, along with the Pearson correlation coefficient. The most common types of lan-

guage to emerge across all experiments were Type 3 (shape; 52% of languages) and

Type 10 (shape and size; 17% of languages). The language types with the highest av-

erage correlation (across all emergent languages) were Type 3 (shape; mean r = .19)

and Type 10 (shape and size; mean r = .16). These results reveal a clear bias toward

encoding the shape and size features of the triangles.

This analysis was also performedwith the dissimilarity ratings from the naive raters;



196 appendix e

Table E.2: List of language types

Type number Encoded meaning dimensions
1 Location
2 Orientation
3 Shape
4 Size
5 Location, Orientation
6 Location, Shape
7 Location, Size
8 Orientation, Shape
9 Orientation, Size
10 Shape, Size
11 Location, Orientation, Shape
12 Location, Orientation, Size
13 Location, Shape, Size
14 Orientation, Shape, Size
15 Location, Orientation, Shape, Size

Table E.3: Encoded meaning dimensions for each emergent language

1 2 3 4 5 6 7 8 9 10
Experiment 1

A 1 .06 3 .05 11 .05 14 .07 3 .2 3 .31 3 .45 10 .42 10 .3 3 .46
B 15 .08 3 .05 3 .12 3 .17 3 .4 3 .44 3 .44 3 .52 3 .45 3 .51
C 5 .07 10 .12 3 .07 9 .26 3 .11 3 .06 3 .37 3 .29 3 .47 3 .37
D 14 .05 3 .07 3 .09 13 .17 6 .04 1 .06 – 1 .16 – –

Experiment 2
E 11 .08 13 .06 14 .11 10 .05 4 .06 6 .11 3 .07 10 .03 4 .06 7 .19
F 9 .08 4 .04 7 .09 7 .08 7 .03 10 .06 12 .06 10 .08 3 .14 3 .12
G 10 .11 6 .12 3 .23 8 .06 10 .04 10 .31 10 .17 3 .36 6 .1 3 .16
H 4 .0 11 .14 6 .1 10 .08 10 .2 3 .14 3 .21 3 .21 3 .14 6 .1

Experiment 3
I 10 .08 11 .17 10 .24 3 .18 3 .3 3 .15 3 .33 3 .24 3 .28 3 .25
J 6 .18 3 .33 3 .22 3 .3 3 .36 3 .38 3 .51 3 .37 3 .36 10 .15
K 2 .22 3 .16 3 .45 13 .14 3 .17 3 .17 10 .2 10 .24 3 .14 10 .3
L 1 .14 3 .24 3 .42 3 .49 3 .52 3 .57 3 .41 3 .61 3 .36 10 .48

Note. Each cell gives the type number (see Table E.2) for the combination of features
that resulted in the strongest correlation, along with the correlation coefficient itself. For
example, in Chain A Generation 8, the strongest correlation (r = .42) is obtained when the
language is assumed to be Type 10, a language that marks shape and size.
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the strongest correlations were also with Type 3 (shape; r = .71, n = 1128, p < .001;

Mantel test) and Type 10 (shape and size; r = .69, n = 1128, p < .001; Mantel test),

suggesting that the naive raters were also rating the dissimilarity between the triangles

based primarily on their shape and size features. This is supported by the fact that the

dimensions of the MDS solution corresponded approximately to shape and size.





Appendix F

Paper 3, Supplement S3: MDS plots

for all generations in all chains

Each of the subsequent pages depicts the evolution of a single iterated learning chain,

from the initial randomly generated labelling at Generation 0 through to Generation 10

(each plot is labelled with its generation number in the top left corner). These plots are

generated following the same procedure described in Paper 3 (see pages 120–121). To

recap, each plot is a two-dimensional, abstract representation of the space of possible

triangles, which was generated by projecting the naive raters’ dissimilarity ratings into

two dimensions usingmultidimensional scaling (MDS). Each dark point represents one

of the triangles from the static set, and the proximity between two points is indicative

of how similar they were judged to be. Roughly, the x-axis corresponds to the shape of

the triangle and the y-axis corresponds to the size of the triangles.

The colours show how the space was labelled at a given generation. The legend at

the bottomof each page gives all unique labels that occurred across the entire chain, and

the colours used to represent the labels are selected by fitting an MDS solution to the

pairwise Levenshtein edit-distances between them. This makes it possible to track how

the languages change over time. At Generation 0 there is no systematic relationship

between label similarity (represented by similarity in colour) and meaning similarity

(represented by proximity in the space). Over generations, the space begins to become

organized into discrete, compact categories: Similar meanings take on similar labels,

and as the languages become more structured, they become more reliably transmitted.
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