
INTRODUCTION 

The meaning spaces typically used in iterated learning experiments (e.g. 
Kirby, Cornish, & Smith, 2008) are unlike natural language, which is 
characterized by open-ended structure. Some recent experiments have used 
continuous spaces (Perfors & Navarro, 2014; Silvey, Kirby, & Smith, 2013), 
but these do not fully address the open-ended nature of  meaning. We have 
constructed a meaning space based on randomly generated triangles that is 
continuous, high-dimensional, open-ended, and not pre-determined by the 
experimenter. This experimental paradigm models discrete infinity (see e.g. 
Studdert-Kennedy, 2005 for some discussion), since a finite set of  symbols 
is used to describe an infinite and ever-changing set of  meanings. 

METHODS 

EXPERIMENTAL PARADIGM Participants (n = 40) in our first experiment 
learned an artificial language describing 48 triangles. The first participant 
in a transmission chain learned words that were randomly generated from a 
finite set of  syllables. Subsequent participants were 
trained on the output of  the previous participant in the 
chain. Participants were then tested on a new set of  
stimuli that changed at every generation (see panel). 
Our second experiment was identical to the first, except 
each generation consisted of  a pair of  participants 
(n = 80) who used the language to communicate. 

STRUCTURE MEASURE To measure structure in the 
languages, we correlate string dissimilarity with 
meaning dissimilarity for all pairs of  stimuli in a 
given participant’s output. The Levenshtein (1966) 
edit-distance was used to measure string dis-
similarity. The dissimilarity between two triangles 
was calculated by taking the Euclidean distance in an 
18-dimensional feature space. To verify the psycho-
logical reality of  this space, we conducted an online dissimilarity ratings 
experiment with 103 participants and found that participants’ ratings were 
highly correlated with the feature space estimates (r = 0.502, z = 8.259). 

EXPERIMENT 1 RESULTS 

The results for experiment 1 are shown in the panels below. The emergent 
languages arbitrarily divided the meaning space into a small number of  
categories based on the size and shape of  the triangle stimuli.

EXPERIMENT 2 RESULTS 

Our second experiment added dyadic communication to the paradigm 
which increased the expressivity of  the languages. These more expressive 
languages appear to make more nuanced distinctions by making use of  
compositional structure. 

We are currently working on methods to determine how the sub-lexical 
structure corresponds to the dimensions of  the meaning space (any ideas 
would be greatly appreciated). However, the differences between these two 
experiments suggest that communicative pressures are required for 
compositionality to arise in higher-dimensional meaning spaces. 

DISCUSSION POINTS 

CATEGORY BIASES Humans are biased towards encoding certain categories 
over others (e.g. Landau, Smith, & Jones, 1988 show a bias for shape). 
Iterated learning amplifies these biasses, allowing us to observe them in a 
laboratory setting. In experiment 1, participants primarily encoded shape 
and size (as opposed to e.g. location or rotation), but in experiment 2, part-
icipants were forced to make other distinctions to disambiguate the triangles. 

LINEAGE SPECIFICITY Although participants 
tended to encode the same properties, there were 
subtle differences between chains in how the space 
was divided, just as there are in natural languages. 

CONVEXITY Contrary to the predictions of  
Gärdenfors (2000), category convexity in the 
emergent languages tended to be suboptimal and 
did not increase over time. We measured convexity 
by counting the number of  triangles with a given 
name that fell into the corresponding cell of  a 
Voronoi tessellation of  the feature space (see panel 
to the right). While it is possible that our feature 
space does not fully capture the underlying con-
ceptual space, this could suggest that humans do not 
discretize meaning spaces into perfectly convex regions. 

SOUND SYMBOLISM It has been suggested that 
sound symbolism facilitates word learning (see e.g. 
Monaghan, Christiansen, & Fitneva, 2011). We 
identified sound symbolic patterning that follows 
documented sound symbolic tendencies for more 
rounded vs. more angular shapes (see e.g. Ahlner & 
Zlatev, 2010). The results are shown to the right.
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Examples of the triangles that made up the meaning space. Stimuli were generated by randomly selecting three coordinates in a 500×500-pixel box. One vertex 
had a dot placed over it to give the triangle an orientation. This procedure allows for the generation of 6 × 1015 possible stimuli.

Example language from Chain H Generation 8, which distinguishes 12 
words and uses a small set of recombinable units (ba, da, fa, ma, & piku).

Results for experiment 2. Over time the languages become more learn-
able (adjusted for chance) and more structured. Compared to experiment 
1, the number of unique strings remains high, suggesting that the 
languages are capable of making more distinctions.

mamada mapiku piku pikupiku

⬛ Chain E      ⬛ Chain F      ⬛ Chain G      ⬛ Chain H
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Example language from Chain B Generation 8. The plot approximates a 
shape-size space. The space of possible triangles was divided into five 
categories based on shape and size. Filled triangles show prototypes.

Results for experiment 1. Over time the languages become smaller and 
more learnable (adjusted for chance), and structure increases, suggesting 
that a systematic mapping has evolved between form and meaning.
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mamofudo/fudu mamozuki/ziki mamo fudo

pika

⬛ Chain A      ⬛ Chain B      ⬛ Chain C      ⬛ Chain D

A participant learns from the previous 
participant’s DYNAMIC SET and is tested 
on a new DYNAMIC SET plus the STABLE 
SET, which provides a consistent set of 
stimuli for the purpose of measuring 
structure and learnability.

STABLE SETDYNAMIC SET 1

WORD SET 1ʹ

Training data

Test phase (interleaved)
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famada famapiku madafa mafada

bababa badaba bafada fababa

Mean pointedness for ten sounds 
that occur in generations 6–10. 
Dotted line shows chance level. The 
sounds [iː], [k], [p], and [z] are more 
likely to occur with more pointed 
triangles, while [əʊ], [d], [f  ], and [m] 
are more likely to occur with less 
pointed triangles.

ɑː iː əʊ uː d f k m p z

⬛ Experiment 1       ⬛ Experiment 2

Sounds

ABOVE: Example of a Voronoi tessel-
lation (right), which represents a 
perfectly convex ideal to which we 
compare the actual data (left). BELOW: 
Mean convexity in the experiments 
suggesting that the languages do not 
evolve increasingly convex meaning 
structure.
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