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The simplicity—informativeness tradeoff
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Kinship terms are simple and informative
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The Minimum Description Length principle

DL(H|D) = DL(D|H) + DL(H)
posterior(H|D) = likelihood(D|H) x 2~ PLH)

Any reqgularities in data can be used to compress that data

The more reqgularities there are, the more the data can be compressed



The Minimum Description Length principle
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The Minimum Description Length principle

DL(H|D) = DL(D|H) + DL(H)
posterior(H|D) = likelihood(D|H) x 2~ PLH)

Any reqularities in data can be used to compress that data
The more reqgularities there are, the more the data can be compressed

We equate learning with finding reqularity: The more the data can
be compressed, the more we have learned from that data

In other words, the more reqularity we can identity, the more we have
understood (learned) about the process generating the data



The Minimum Description Length principle

DL(H|D) = DL(D|H) + DL(H)




The Minimum Description Length principle

DL(H|D) = DL(D|H) + DL(H)

DL(D|H) 7/ bits 2 bits O bits
DL(H) 1 bit 3 bits 6 bits

DL(H|D) 8 bitsx 5 bits v 6 bits X
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Bayesian inference
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posterior(L|D) = likelihood(D|L) x prior(L)




Computing DL(L): The rectangle code

Fast & Feldman (2002)



Computing DL(L): The rectangle code

76.58 bits 24 bits

Fast & Feldman (2002)



Bayesian iterated learning
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Regier et al.'s informativeness model
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Regier et al.'s informativeness model
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Regier et al.'s informativeness model
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Regier et al.'s informativeness model

pov—C, zix—C,
wud—C, reb—C,

c, C=I C,

C,—pov C,—zix
C,—wud C,~reb _

gzix>

e’

i

speaker target listener

_ lI_

universe




Probability

0.05

0.04

0.03

0.02

0.01

0.00

Communicative cost

N

C(1) o Z e~ vd(isc)”

CECj

K(L):=) P(i)-—logC(i)

reU

Expressivity A system of many cateqgories is
more informative than a system of few
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Abstract Regier’s (2012) kinship study, Levinson (2012) pointed out
that although that research explains cross-language semantic

Why do langua es parcel human €Xpe jence into categories in L. ] L L.
Y guages P P & yariation 1m communicative terms, 1t does not tell us “where

the ways they do? Languages vary widely in their category

systems but not arbitrarily, and one possibility is that this our categories come from” (P- 089); that 15, it does not
constrained variation reflects universal communicative needs. establish what process gives rise tO the diverse attested
Consistent with this idea, it has been shown that attested systems of informative categories. Levinson suggested that
category Systems tend to support highly informative a possible answer t0 that question may lie In 2 line of
communication. However it is not yet known what process experimental work that explores puman simulation of
produces these informative systems. Here we show that cultural transmission in the laboratory, and “shows how

human simulation of cultural transmission in the lab produces
systems of semantic categories that converge toward greater
informativeness, in the domains of color and spatial relations.
These findings suggest that larger-scale cultural transmission
over historical time could have produced the diverse yet

categories get honed through iterated learning across
simulated generations” (p. 989). We agree that prior work
explaining cross-language semantic yariation in terms of
informative communication has not yet addressed this

informative category systems found in the world’s 1anguages- central question. and we address it here.

Keywords: Informative communication, language evolution, .

iterated learning, cultural transmission, spatial cognition, Iterated learning and category SyStemS

color naming. semantic universals- The general idea behind iterated learning studies is that of
a chain Or sequence of learners. The first person in the chain

The origins of semantic diversity produces SOME behavior; the next person in the chain

Languages Vvary widely in their fundamental units of observes that behavior, learns from it, and then produces

meaning—the concepts and categories they encode in single behavior of her owo; that 1ear_ned behavior 18 then .observed
S . farms. For example, SOME languages by the oext person in the chadl, who learns from 1t, and S0
i & O This expenmental paradigm 18 meant to capture in

- ST T trapsmission and alteration of cultural

T .d  behavior



Can iterated learning give rise to informative languages?
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Training phase
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Stage 1: Training

15 minutes

You are going to learn a simple language. We will train you on 4 words in the language and we will test how
well you are learning the words. Try to learn the language as well as you can and aim to be accurate in your
answers. You will receive a 2¢ bonus payment for every correct test answer. If you decide to stop the task,
please click the button so that someone else can take part.

@ Look at @ Sometimes you'll see a
the picture picture that you saw before

;0 Learr; ® Click on the word to @ Try to recall
the wor confirm you learned it the correct word

® If correct, you
get a 2¢ bonus
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Test phase

localhost/~jon/shepard/ & a i Ol +

Stage 2: Test

5 minutes

You have now completed the training stage! Next we will test you on the language that you just learned. For
each picture, try to click on the correct word. You will get a 2¢ bonus payment for every correct answer. It is
therefore possible to earn up to $1.28 in this stage of the task. However, this time we will not tell you if you are
correct or incorrect. You will find out at the end how many you got correct.

START
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Stimuli
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Which is easiest to learn?
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Result: Learnability advantage for the less informative systems
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Experiment 2



Iterated learning with humans
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Iterated learning with humans




Iterated learning with humans
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Two ways of achieving simplicity
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Two ways of achieving simplicity

Increase in convexity

increases informativeness

Decrease In expressivity

decreases informativeness



Conclusions

Languages are shaped in the simplicity—informativeness tradeoff by pressures
from learning and communication

Learning contains a simplicity bias to prevent overfitting noise, and to aid
reasoning about unseen meanings

lterated learning converges to the prior bias, favouring languages that are as
simple as possible:

Loss of expressivity: Loss of words/concepts to aid learning
Convex categories: Reorganization of the space to aid learning

In the process, some informativeness may come along tor the ride, potentially
obscuring the causal mechanism in experimental work
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