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Kinship terms are simple and informative
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Regier et al.'s informativeness model
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Abstract

Why do languages parcel human experience into categories in
the ways they do? Languages vary widely in their category
systems but not arbitrarily, and one possibility is that this
constrained yariation reflects universal communicative needs.
Consistent with this idea, it has been shown that attested
category systems tend tO support highly informative
communication. However it i8 not yet known what process

systems of semantic categories that converge toward greater
informativeness, in the domains of color and spatial relations.
These findings suggest that larger-scale cultural transmission
over historical time could have produced the diverse Yet
informative category systems found in the world’s languages-

Keywords: Informative communication, language evolution,
iterated Jearning, cultural transmission, spatial cognition,
color naming, semantic universals.

The origins of semantic diversity

Languages vary widely in their fundamental units of
meaning—the concepts and categories they encode in single
words or other pasic forms. For example, sOme languages
. ue a single color term spanning green and blue (Berlin &

0 SPETT2 01 term that captures the

N

Regier’s (2012) kinship study, Levinson (2012) pointed out
that although that research explains cross-language semantic
yariation in communica iye terms, it does not tell us “where
our categories come from” (p. 989): that is, it does not
establish what process gives rise to the diverse attested
systems of informative categories. Levinson suggested that
a possible answer to that question may lie in a line of
experimental work that explores human simulation of
cultural transmission in the laboratory, and “shows how
categories get honed through iterated learning across
simulated generations” (p. 989)- We agree that prior work
explaining cross-language semantic yariation in terms of
informative communication has not Yet addressed this
central question, and we address it here.

Iterated Jearning and category systems

The general idea behind iterated learning studies is that of
a chain or sequence of learners. The first person in the chain
produces some behavior; the next person in the chain
observes that behavior, learns from it, and then produces
behavior of her own; that learned behavior 18 then observed
by the next person in the chain, who learns from it, and sO
on. This experimental paradigm is meant tO capture 1n
miniature the transmission and alteration of cultural
information across generations; the learned behavior

ST T s filtered through the chain of
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Carstensen, Xu, Smith, Regier (2015)
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Bayesian inference
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Bayesian iterated learning under a simplicity prior
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Bayesian iterated learning under an informativeness prior
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localhost/~jon/shepard/

Stage 1: Training

15 minutes

You are going to learn a simple language. We will train you on 4 words in the language and we will test how
well you are learning the words. Try to learn the language as well as you can and aim to be accurate in your
answers. You will receive a 2¢ bonus payment for every correct test answer. If you decide to stop the task,
please click the button so that someone else can take part.

@ Look at
the picture

@ Learn
the word

® Click on the word to
confirm you learned it

@ Sometimes you'll see a
picture that you saw before

@ Try to recall
the correct word

What is this

® If correct, you
get a 2¢ bonus
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What is it called?
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Stage 2: Test

5 minutes

You have now completed the training stage! Next we will test you on the language that you just learned. For
each picture, try to click on the correct word. You will get a 2¢ bonus payment for every correct answer. It is
therefore possible to earn up to $1.28 in this stage of the task. However, this time we will not tell you if you are
correct or incorrect. You will find out at the end how many you got correct.
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Iterated learning with humans
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Category systems that were converged on
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Experimental results
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Estimating unknown parameters of the model
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Estimating unknown parameters of the model

iInput output

fit parameter values to
maximize likelihood of
participant output
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Model results with best-fit parameters
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Languages are shaped under the simplicity—informativeness
tradeoft by pressures from induction and interaction
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A rational learner with no prior expectations ought to apply
Occam’s razor to domain-general problems of induction



Iterated learning results in simple categorization systems through

two mechanisms

Loss of expressivity

Restructuring



Iterated learning results in simple categorization systems through
two mechanisms

©
D)
©
C
B
D
O
O

Restructuring Loss of expressivity

Iterated learning can give rise to
informative languages without
positing a bias for informativeness



Iterated learning results in simple categorization systems through
two mechanisms
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Restructuring Loss of expressivity
Iterated learning can give rise to But! Unconstrained, iterated learning
informative languages without results in degenerate languages, so

positing a bias for informativeness there’s still a role for interaction






Take-home messages

Languages are shaped under the simplicity—informativeness tradeoft by pressures from
induction and interaction

A rational learner with no prior expectations ought to apply a simplicity principle to
domain-general problems of induction

lterated learning (repeated induction) results in simple categorization systems through two
mechanisms:

Compact categories: Restructuring of the space = more informative

Loss of expressivity: Loss of words/concepts = less informative

lterated learning can give rise to informative(-ish) categories without actually positing a bias
for informativeness; the languages are actually evolving to become simpler

Nevertheless, interactional dynamics restrain languages from total degeneration



