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Principle of multiple 
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P (H|D) ∝ P (H)P (D|H)
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input output

B

π sim, π inf

w ≥ 0
ε ∈ (0,1)

fit parameter values to 
maximize likelihood of 
participant output



Model results with best-fit parameters



Simplicity prior Informativeness prior



Simplicity prior Informativeness prior



Conclusions



Language InteractionInduction

Simplicity

Informativeness

Languages are shaped under the simplicity–informativeness 
tradeoff by pressures from induction and interaction

A rational learner with no prior expectations ought to apply 
Occam’s razor to domain-general problems of induction
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But! Unconstrained, iterated learning 
results in degenerate languages, so 

there’s still a role for interaction



Thank you!



Take-home messages

Languages are shaped under the simplicity–informativeness tradeoff by pressures from 
induction and interaction 

A rational learner with no prior expectations ought to apply a simplicity principle to 
domain-general problems of induction 

Iterated learning (repeated induction) results in simple categorization systems through two 
mechanisms: 

Compact categories: Restructuring of the space ⇒ more informative 

Loss of expressivity: Loss of words/concepts ⇒ less informative 

Iterated learning can give rise to informative(-ish) categories without actually positing a bias 
for informativeness; the languages are actually evolving to become simpler 

Nevertheless, interactional dynamics restrain languages from total degeneration


