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A B S T R A C T

Recent research has shown that semantic category systems, such as color and kinship terms, find an optimal
balance between simplicity and informativeness. We argue that this situation arises through pressure for sim-
plicity from learning and pressure for informativeness from communicative interaction, two distinct pressures
that often (but not always) pull in opposite directions. Another account argues that learning might also act as a
pressure for informativeness, that learners might be biased toward inferring informative systems. This results in
two competing hypotheses about the human inductive bias. We formalize these competing hypotheses in a
Bayesian iterated learning model in order to simulate what kinds of languages are expected to emerge under
each. We then test this model experimentally to investigate whether learners’ biases, isolated from any com-
municative task, are better characterized as favoring simplicity or informativeness. We find strong evidence to
support the simplicity account. Furthermore, we show how the application of a simplicity principle in learning
can give the impression of a bias for informativeness, even when no such bias is present. Our findings suggest
that semantic categories are learned through domain-general principles, negating the need to posit a domain-
specific mechanism.

1. Introduction

There is no singular, objective way of dividing the world into ca-
tegories; different human populations align on different systems of ca-
tegorization. In the domain of kinship, for example, different languages
have different ways of grouping family members into labeled categories
(Murdock, 1970). Cantonese, for example, makes a lexical distinction
between all four grandparents—yèh (father’s father), màh (father’s
mother), gūng (mother’s father), and pòh (mother’s mother) (Cheung,
1990), while most varieties of English collapse the distinction between
the maternal and paternal lineage. Despite this diversity in how lan-
guages classify meanings into categories, there is evidence to suggest
that such category systems achieve a balance between simplicity (e.g.,
the number of categories that must be learned) and informativeness
(e.g., the ability to express useful distinctions). Different languages find
different solutions to this tradeoff (as in the comparison between
Cantonese and English above), but they nevertheless offer a near op-
timal balance between the two properties.

There is a long tradition in the cognitive and language sciences of
explaining such constraints on linguistic variation in terms of com-
peting pressures for simplicity and informativeness (e.g., Martinet,
1952; von der Gabelentz, 1891; Zipf, 1949). In the context of semantic

category systems, Rosch (1978, p. 28) argued that “the task of category
systems is to provide maximum information with the least cognitive
effort,” Komatsu (1992, p. 502) discussed “the tension between in-
formativeness and economy” that exists in such systems, and
Gärdenfors (2014, p. 132–133) has said that concepts achieve “a bal-
ance between the precision of the noun and the number of words that
have to be remembered.” More recently, informativeness has been ex-
plicitly linked to a notion of precise communication, as illustrated in
this quotation from Kemp, Xu, and Regier (2018, p. 111):

A highly informative communicative system would be very fine-
grained, detailed, and explicit—and would as a result be complex,
not simple. A very simple system, in contrast, would necessarily
leave implicit or unspecified many aspects of the speaker’s intended
meaning—and would therefore not be very informative. A system
supports efficient communication to the extent that it achieves an
optimal trade-off between these two competing considerations.

This claim has been shown to hold in a variety of domains, including
kinship terms (Kemp & Regier, 2012), spatial relationships (Khetarpal,
Neveu, Majid, Michael, & Regier, 2013), numeral systems (Xu & Regier,
2014), color terms (Regier, Kemp, & Kay, 2015), container names (Xu,
Regier, & Malt, 2016), and animal taxonomies (Zaslavsky, Regier,
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Tishby, & Kemp, 2019). However, as Levinson (2012, p. 989) has
pointed out, although this body of research demonstrates that natural
languages are both simple and informative, and that a tradeoff exists
between these two properties, it does not specify the mechanisms that
give rise to this state of affairs.

In direct response, Carstensen, Xu, Smith, and Regier (2015) offered
a partial answer. The authors argue that language learners are biased
toward inferring informative languages, thus providing a potential
mechanism behind the presence of informativeness in semantic cate-
gory systems. This was demonstrated in two experimental studies using
the iterated learning paradigm (Kirby, Cornish, & Smith, 2008). In this
paradigm, an artificial language is transmitted from one participant to
another. As the language is passed along a chain of learners, it gradually
adapts to their cognitive biases, revealing what those biases are (for
reviews, see Kirby, Griffiths, & Smith, 2014; Tamariz, 2017). Carstensen
et al. (2015) demonstrated that informative semantic categories can
arise through this process, which therefore suggests that humans may
have an inductive bias that favors informativeness. They showed this in
two studies. In Study 1, the authors reanalyzed data from an iterated
learning experiment with color terms by Xu, Dowman, and Griffiths
(2013), and in Study 2, the authors conducted a novel iterated learning
experiment using spatial relationship stimuli.

The idea that learning itself can give rise to informative systems is
also supported by Fedzechkina, Jaeger, and Newport (2012), albeit
outside the domain of semantic categories. In their studies, adult lear-
ners restructure artificial languages in ways that appear to balance ef-
fort and ambiguity avoidance (i.e., informativeness). Fedzechkina et al.
(2012, p. 17900) conclude that, “…language learners are biased toward
communicatively efficient linguistic systems and restructure the input
language in a way that facilitates information transfer.”

However, these results are at odds with the prior research into it-
erated learning, which has repeatedly shown that learners have a bias
for simplicity—not informativeness—and that iterated learning there-
fore gives rise to simple, degenerate, uninformative languages.
Informative languages only emerge in the presence of a shared com-
municative task (e.g., Carr, Smith, Cornish, & Kirby, 2017; Kirby,
Tamariz, Cornish, & Smith, 2015; Motamedi, Schouwstra, Smith,
Culbertson, & Kirby, 2019; Raviv, Meyer, & Lev-Ari, 2018; Saldana,
Kirby, Truswell, & Smith, 2019; Winters, Kirby, & Smith, 2018) or an
artificial analog of such a task (Beckner, Pierrehumbert, & Hay, 2017;
Kirby et al., 2008), neither of which was present in the two studies
described by Carstensen et al. (2015). One reason why learners might
be biased toward simplicity is that, when learners are faced with un-
derstanding the world, the best strategy—given that they have no ex-
pectations about how the world is structured—is to apply Occam’s
razor; all things being equal, simpler hypotheses should be preferred
over more complex ones (Li & Vitányi, 2008; Rissanen, 1978;

Solomonoff, 1964). This is a highly general principle, claimed to op-
erate across cognitive domains (Chater, Clark, Goldsmith, & Perfors,
2015; Chater & Vitányi, 2003; Culbertson & Kirby, 2016; Feldman,
2016; Kemp, 2012), but its effect on linguistic and conceptual systems
will be amplified by iterated learning, ultimately giving rise to simple
languages.

This leaves us with a somewhat mixed picture. On the one hand,
there is a long tradition of associating learning with simplicity, and a
large body of iterated learning experiments show that learning ulti-
mately has a simplifying effect on language structure. From this per-
spective, informativeness is usually argued to derive from another
source, such as communicative interaction. But on the other hand, some
recent studies argue that language learners may also be directly biased
toward informative structures. This gives rise to two competing posi-
tions about the human inductive bias: Do human learners have an in-
ductive bias toward simple languages or informative languages?

In an iterated learning model with Bayesian category learners, we
show what kinds of languages are expected to emerge under a bias for
simplicity and under a bias for informativeness. We then test the pre-
dictions of this model experimentally, and in an objective model com-
parison, we find that the human learning bias is better characterized by
a preference for simplicity. Furthermore, we show how the application
of a simplicity principle in learning can explain the apparently con-
tradictory results described by Carstensen et al. (2015): Under a bias for
simplicity, iterated learning gives rise to simple category systems that
happen to have one of the hallmark features of an informative category
system—a compact structural organization. Thus, although it is true
that informativeness, when defined a particular way, can emerge
through iterated learning, this does not imply that learners have a do-
main-specific bias for informativeness, since its emergence can also be
explained by a domain-general bias for simplicity.

2. Model

In this section we describe an iterated learning model that simulates
what happens when a language is passed down a chain of Bayesian
learners. This reveals the kinds of languages that are expected to arise
when pressure from learning—on its own—is repeatedly applied.
Furthermore, by manipulating the learning bias—represented by the
prior function—we can test the two competing positions outlined in the
Introduction. By formalizing the two positions in the form of a model,
we make all assumptions explicit, and the predictions made by the
model are directly testable.

2.1. Method

The basic model framework is illustrated in Fig. 1. The universe

Fig. 1. From left to right: A universe is a two-dimensional metric space consisting of M meanings; this space may be partitioned into N mutually disjoint categories;
agents are provided with a fixed set of Nmax signals S, which are used to label the categories; a language defines how the space is partitioned into categories and how
those categories are labeled. In this example, the language partitions a 4 × 4 space into three categories using three of the four available signals (each signal is
represented by a color).
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consists of M meanings U = {m1,…,mM}, which we treat as a metric
space (U,d), where d is the distance function defined between mean-
ings. Usually we will refer to this space simply as U, sometimes also
denoting the dimensionality (e.g., U4×4 for a 4 × 4 space of M = 16
meanings). A partition P = {C1,…,CN} divides U into N categories,
such that 1 ≤ N ≤ Nmax where Nmax ≤ M defines some arbitrary limit
on the number of categories. Each category C is a set of meanings such
that all categories are nonempty (Ci ≠ ∅), no meaning exists outside a
category ( =i

N
1Ci = U), and all categories are mutually disjoint

(Ci ∩ Cj = ∅ for i ≠ j). Each category is labeled by one signal from a
fixed set of Nmax signals S = {s1,…, sNmax} according to a lexicon l : S →
P (if N < Nmax, the lexicon maps unused signals to ∅). A language is a
partition and lexicon, L = (P, l), and the goal of the learner is to infer
what this language is—how the language partitions the universe into
categories and how those categories are labeled. To do this, the Baye-
sian learner considers all possible language hypotheses—all possible
ways the universe could be partitioned into labeled categories—and
chooses the hypothesis that offers a good match with (a) the observed
data, as defined by the likelihood, and (b) the learner’s bias, as defined
by the prior. We begin by describing the likelihood and then consider
two possible priors.

2.1.1. Likelihood
The probability of an agent producing signal s ∈ S given that it

possesses language L and needs to express meaning m is given by

=p s L m
m l s
m l s( | , ; )

1 if ( )
if ( )

N 1max (1)

where l(s) is the category labeled by signal s and noise is controlled by
the free parameter ε ∈ (0,1). If ε is small, there is a high probability that
the agent will produce the correct signal for meaning m and a low
probability that it will produce one of the other Nmax − 1 signals at
random. During learning, the data observed by an agent is a set of
meaning–signal pairs D = {〈m, s〉1,〈m, s〉2,…}, where meaning m is
labeled by signal s, a noisy indicator of m’s category membership.
Consequently, the likelihood of observing dataset D if language L were
true is the product of p(s|L,m;ε) for all observed meaning–signal pairs:

=p D L p s L m( | ; ) ( | , ; ).
m s D, (2)

2.1.2. Simplicity prior
The simplicity prior endows agents with an inductive bias favoring

simple languages; when the observed data is equally likely under two
languages, an agent will prefer the language that is simpler following
the principle of Occam’s razor. The simplicity prior πsim is therefore
inversely proportional to the complexity of the language:

L( ) 2 .L
sim

complexity( ) (3)

The complexity of a language is its minimum description length in bits.
For our description method, we adopt Fass and Feldman’s (2002) rec-
tangle code, which provides a set of rectangle “symbols” that may be
used to describe an arbitrary region (i.e., a category’s extension) in the
universe. In U4×4, this method provides a total of 100 symbols, which
are illustrated in Fig. 2. A valid description of a category is a set of
rectangle symbols that losslessly describe the category’s extension,
which we call a “rectangularization” of that category. For a given ca-
tegory C, there are usually many possible rectangularizations (de-
scriptions), the set of which is given by ℜ(C). A rectangularization
R ∈ ℜ(C) that minimizes description length is selected, and description
lengths are then summed over all categories to obtain the overall
complexity of a language:

R
=L p rcomplexity( ) min log ( ),

C L R C r R( ) (4)

where p(r) is the probability of a rectangle symbol occurring following
the same assumptions outlined in Fass and Feldman (2002, p. 38–39).
Illustrative examples are shown in Fig. 2. For additional detail on these
methods see Carr (2019, p. 91–97), but note that we are essentially
adopting a minimum description length approach (Grünwald, 2007;
Rissanen, 1978), in which the lossless compressibility of a hypothesis is
used as an estimator of its simplicity.1

This method encodes two main assumptions about the properties
that make a semantic category system simple:

1. Number of categories The fewer categories a system has, the
simpler that system is (i.e., complexity is lower).

2. Contiguity The more contiguous categories are, the simpler the
system is (i.e., complexity is lower).

Thus, under the simplicity bias, the learner will prefer systems that
exhibit these two properties. Although the rectangle code does not fully
capture the kinds of category systems tested in Carstensen et al. (2015),
we contend that it still offers a useful way to model a general preference
for simplicity in semantic category systems. We return to this issue in
the Discussion.

2.1.3. Informativeness prior
To model an inductive bias for informativeness, we directly adopt

the communicative cost framework used by Carstensen et al. (2015)
and other studies from that literature (e.g., Regier et al., 2015). This
prior endows agents with an inductive bias toward informative lan-
guages; when the observed data is equally likely under two languages,
an agent will prefer the language that is more informative. The in-
formativeness prior πinf is inversely proportional to the communicative
cost of the language:

L( ) 2 ,L
inf

cost( ) (5)

and communicative cost is calculated according to:

=L p m p m Ccost( ) ( ) log ( | ),
C L m C (6)

where p(m) is the probability that a hypothetical speaker would wish to
express meaning m (assumed to be uniform; p(m) = 1/ ∣ U∣) and p(m|C)
is the probability that a hypothetical listener would infer meaning m on
hearing the signal associated with category C:

p m C d m m( | ) exp ( , ) ,
m C

2

(7)

where γ > 0 controls how quickly similarity decays with the distance
between two meanings in (U,d). In all work reported below, we set
γ = 1 and d(⋅, ⋅) is the Euclidean metric. Eq. (7) models categories as
Gaussians in which the most prototypical meaning (the meaning at the
geometric center of the category with the greatest similarity to other
category members) has the highest probability of being inferred by a
hypothetical listener. A simple example of the communicative cost
framework is illustrated in Fig. 3. Importantly, note that no interaction
is actually played out between our agents; rather, the learner has a bias
favoring languages that would hypothetically be more informative in
expected communicative scenarios. For a more complete introduction
to the communicative cost framework, consult the references above or
Carr (2019, p. 38–44).

This method encodes two main assumptions about the properties

1 This should not be confused with the fact that categories themselves are a
form of lossy compression. In evaluating a category system (i.e., a candidate
language hypothesis L), the simplicity-endowed agent is seeking the shortest
lossless description of that system, but the system itself may be lossy (a single
category encompasses multiple meanings) or lossless (every meaning belongs to
its own distinct category) in terms of its representational or communicative
precision (informativeness).
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that make a semantic category system informative:

1. Number of categories The more categories a system has, the more
informative that system is (i.e., communicative cost is lower).

2. Compactness The more compact categories are, the more in-
formative the system is (i.e., communicative cost is lower).

Thus, under the informativeness bias, the learner will prefer systems
that exhibit these two properties. By “compactness” we mean the extent
to which similar meanings belong to the same semantic category and
dissimilar meanings belong to different semantic categories. This has
also been described as “well-formedness” (Regier, Kay, & Khetarpal,
2007). Compact categories are considered informative in the commu-
nicative cost framework because it is assumed that listeners will tend to
infer more prototypical meanings, so arranging categories compactly
will tend to result in greater communicative precision.

2.1.4. Posterior
On observing data D, the Bayesian learner samples a language

hypothesis L∗ from the posterior distribution over the space of possible
languages ℒ, which is given by Bayes’ rule:

p L D w p D L L( | ; , , ) ( | ; ) ( ) .w (8)

Here, w is a free parameter determining the strength of the prior re-
lative to the likelihood.2 In all work that follows, we set Nmax = 4 (an
agent is limited to inferring at most four categories) and we assume an
8 × 8 universe, such that the number of language hypotheses is
|ℒ| = 464. Since we cannot sample directly from a hypothesis space of
this size, we use the Metropolis–Hastings algorithm, which is initialized
with a random language L0. To select the language at the next
step, Li+1, we propose a candidate language L′ and then calculate the
acceptance ratio α, given by the product of the posterior ratio and
proposal ratio:

= p L D w
p L D w

p L L
p L L

( | ; , , )
( | ; , , )

( | )
( | )

.
i

i

i (9)

To propose a new candidate, a rectangular region in U8×8 is chosen at
random such that all meanings in that region belong to a single cate-
gory according to Li; these meanings are then transferred to one of the
other three possible categories at random, forming the new candidate
L′. This proposal function is asymmetric—p(L′|Li) ≠ p(Li|L′)—which is
accounted for by the proposal ratio in Eq. (9).3 Finally, the candidate
language is accepted (Li+1 = L′) if α ≥ 1 or with probability α if α < 1;
otherwise the candidate is rejected and the previous state is retained
(Li+1 = Li). This process is repeated 5000 times, and the final state is
taken to be a fair sample from the posterior (L∗ = L5000). Note that this
sampling procedure is used by a single agent to induce its language and
should not be confused with the iterated learning procedure described
in the following section.

Fig. 2. Left: The 100-symbol rectangle code which is used to describe categories in a 4 × 4 universe; each symbol is shown with a binary codeword. Right: Three
example languages and their complexity scores, as measured by the length of their shortest descriptions in the rectangle code. The first language, which was
generated randomly, does not permit a short description and is therefore considered complex. The second language consists of three contiguous categories that permit
shorter descriptions, so it is therefore considered less complex. The third language, which has a very short description, is the joint-simplest four-category language.
The binary strings are for illustrative purposes and do not reflect the shortest possible descriptions that could be obtained under an ideal coding system.

Fig. 3. A speaker wishes to communicate a target meaning (e.g., m12) from a
universe of meanings. She determines which category the target belongs to
according to the language (e.g., C2) and utters its associated signal (e.g., s3). The
listener maps this signal back to the category and must decide on a specific
meaning to infer. In this example, the listener has three potential meanings to
choose from, so the probability of a successful outcome is 1/3. However, in
many instances of the communicative cost model, including the one presented
in this paper, the listener is more likely to infer prototypical (central) members
of the category. An informative language, with low communicative cost, is
structured in such a way as to minimize the potential loss of information that
occurs during interaction.

2 When w = 1 the prior is left unchanged; when w > 1, the prior is
strengthened; when 0 < w < 1 the prior is weakened; and when w = 0 the
prior is flattened to a uniform distribution.

3 A simpler symmetric proposal function in which single meanings are moved
between categories at each step is prone to getting stuck in local maxima, which
limits the ability of the algorithm to freely explore the hypothesis space under
either prior function. Note that this method is not biased toward introducing
new rectangles because it only modifies the category membership of rectan-
gular areas that already exist. See Carr (2019, p. 97–102) for additional detail
on these methods.
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2.1.5. Iterated learning
Agents are organized into chains such that the production output of

one agent becomes the training input to the following agent in the
chain, subject to noise on production and the bottleneck on transmis-
sion (a limit on how much information is transmitted from one gen-
eration to the next). An agent produces signals for each of the 64
meanings in U8×8 according to Eq. (1), such that any given signal may
be a production error with probability ε. However, only some propor-
tion of these 64 productions are actually observed by the next gen-
eration—only some pass through the bottleneck. This proportion is
determined by the bottleneck parameter b. To ensure that the agent
observes meanings from all corners of the space, the productions were
selected pseudorandomly: The 8 × 8 space is broken up into 16 2 × 2
segments and a fixed number of meanings b ∈ {1,2,3,4} are randomly
selected from each segment (see Fig. 4 for examples). Following other
work in the iterated learning literature, the first agent in a chain learns
from a randomly generated language. Finally, we also consider the
exposure level ξ which controls how many exposures an agent gets to
the productions that passed through the bottleneck (i.e., each mean-
ing–signal pair that passes through the bottleneck is observed ξ times).

2.2. Results

Our account of the results contrasts three prior biases: the simplicity
prior with w = 1, the informativeness prior with w = 1, and a strong
form of the informativeness prior with w = 500. This strong form of the
informativeness prior emphasizes the compactness property mentioned
earlier; agents with this prior bias have a much stronger preference for
compact categories. Results under these three biases are shown in Fig. 5
for the parameter settings ε = .01, b = 2, and ξ = 2 (to explore the full
set of model results under 48 parameter combinations, see the supple-
mentary item or https://joncarr.net/p/shepard/). In all analyses in this
paper, we consider four quantities of interest: the number of categories
inferred, complexity (see Eq. (4)), communicative cost (see Eq. (6)), and
transmission error, which is measured as the variation of information

(Meilă, 2007) between the language at generation i and the language at
generation i − 1.4

2.2.1. Simplicity prior
The results under the simplicity prior are shown by the blue lines in

Fig. 5 and a typical chain is depicted in Fig. 6A. Over 50 generations,
the languages become less complex, which is achieved in two ways:
First, the categories take on simple, contiguous structures that may be
described by a shorter description in the rectangle code; and second,
categories are gradually lost over time, further simplifying the lan-
guages. This has an interesting effect on communicative cost, which
initially drops—implying more informative languages—but then begins
to rise again. This is because the contiguous categories that initially
emerge are generally quite compact, and since communicative cost is
sensitive to compactness, it initially decreases. But this effect is then
gradually eroded by the loss of categories. Furthermore, the category
structures that arise under the simplicity prior tend to mark distinctions
on just one of the two dimensions; in the example in Fig. 6A, the lan-
guage ends up marking a three-way distinction on the x-axis. This
overall process of simplification results in more learnable languages, as
indicated by decreasing transmission error over time. Within around 10
generations, the languages have simplified into configurations that are
reliably transmitted from one generation to the next, despite the fact
that agents only receive input data for half (b = 2) of the meanings.

2.2.2. Informativeness prior
The results under the unweighted informativeness prior (w = 1) are

shown by the solid red lines in Fig. 5 (see Fig. 6B for a typical example).
The bias for informativeness causes the agents to maintain all four ca-
tegories, and there is no effect on complexity, communicative cost, or
transmission error. This is because the prior is very flat with respect to
compactness and mostly encodes a preference for more categories,
which cannot be obtained because of the Nmax = 4 limit that we have
imposed. If we were to remove this limit, the number of categories
would eventually rise to 64 (every meaning forms its own category),
communicative cost would decrease to its minimum value of 0 bits, and
complexity would increase to its maximum value of around 715 bits.

2.2.3. Strong informativeness prior
The dashed red lines in Fig. 5 show results under the strong in-

formativeness prior (w = 500; see Fig. 6C for an example). When the
informativeness prior is strengthened in this way, all four categories
continue to be maintained, but communicative cost also experiences a
sustained decrease because the stronger prior favors categories that are
maximally compact. This pressure for compactness drives chains to-
ward one special partition of the universe: the partition into quadrants,
as seen in the final generation in Fig. 6C. This quadrant partition is the
optimal packing of the space into four equally-sized categories. Under
this prior, the learner has a strong expectation that categories will be
arranged as compactly as possible and is therefore biased toward in-
ferring such compact structure.

2.2.4. Convergence to the prior
The extent to which chains converge to the prior bias—be it for

simplicity or informativeness—is essentially controlled by inter-
generational information loss, which Spike, Stadler, Kirby, and Smith
(2017) identify as an essential requirement for the emergence of
structured languages. The greater the information loss, the faster the
convergence to the prior. In other words, the less data an agent has to
rely on, or the more unreliable that data is, the more the agent must

Fig. 4. Illustration of the transmission procedure over a single generation. The
agent at generation i has a language, which it uses to produce signals with some
probability of noise ε. These productions pass through the bottleneck on
transmission: The universe is divided into 16 2 × 2 segments, indicated here by
the black grids, and b meanings are selected from each segment. The agent at
generation i + 1 only sees the signals associated with these meanings and,
aided by the prior, must generalize to unseen meanings (empty white cells)
forming a new language. The language is transmitted most faithfully when
there is low noise (e.g., ε = .01) and a wide bottleneck (e.g., b = 2).

4 Variation of information (VI) is an information-theoretic distance metric
between set partitions. Under this measure, an agent that infers exactly the
same partition as the previous agent in the chain will have VI of 0 bits; max-
imum VI is log|U| = 6 bits.
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lean on its prior bias to reconstruct the language. This is illustrated in
Fig. 7; there is greater convergence to the prior bias when the bottle-
neck is tighter, there are fewer exposures, or the level of noise is
greater.

2.3. Summary

We have put forward a model of a Bayesian category learner, and
we have considered two prior functions: one for simplicity and one for
informativeness. These two priors represent two extreme theoretical
positions that one may take in regard to the learning of semantic ca-
tegories, as outlined in the Introduction. In addition, we consider what
happens when the informativeness prior is strengthened such that its
compactness component is magnified. The results show that, when the
number of categories is limited to four (i.e., Nmax = 4), as is the case in
Carstensen et al. (2015, Study 2), communicative cost only decreases
over time, as the authors observed, in one of two situations:

1. Communicative cost decreases with generation if learners have a

simplicity bias, but this decrease is not sustained in the long run.
2. Communicative cost decreases with generation if learners have an

informativeness bias, but only if the compactness component of the
bias is sufficiently strong.

If the simplicity prior offers a better model of the human inductive bias,
we would expect to find that iterated learning results in contiguous
category structures that make distinctions on principally one dimension
and perhaps also a loss of some categorical distinctions altogether. If
the informativeness prior offers a better model, we would expect to find
that iterated learning maintains the number of categorical distinctions
and—if the compactness component of the bias is sufficiently stron-
g—leads to maximally compact category structures. We now test these
predictions in an experimental analog of our model.

3. Experiment

The experiment is largely identical to the model except that the
Bayesian agents are replaced with human learners. The prior bias (π),

Fig. 5. Number of categories, complexity, communicative cost, and transmission error under the simplicity prior (w = 1, solid blue lines), the informativeness prior
(w = 1, solid red lines), and a strong form of the informativeness prior (w = 500, dashed red lines). Each line shows the mean of 100 chains over 50 generations, and
the shaded areas show the 95% confidence intervals on the mean. In these runs of the model, agents saw half of the meanings (b = 2) in two exposures (ξ = 2) with a
1% chance of noise (ε = .01). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. An example chain for each of the three prior biases: (A) the simplicity prior, (B) the informativeness prior, and (C) the strong informativeness prior. Each
chain starts with a randomly generated language (top-left) and is followed by 50 generations of iterated learning (from top-left to bottom-right).
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its weight (w), and the noise level (ε) are considered unknown para-
meters of the human learner; in a later section we estimate these
parameters from the experimental data. The bottleneck parameter (b)
and exposure level (ξ) are considered properties of the environment and
are therefore fixed by the experiment. By maintaining close contact
with the model, the experiment allows us to directly test the two
competing positions formalized in the model and objectively determine
which hypothesis about the human inductive bias is more likely to be
true.

3.1. Method

The experiment is a simple category learning task comprised of a
training phase (approximately 15 min) and a test phase (approximately
5 min). Participants are first taught labels for half of the stimuli and are
then asked to produce labels for all stimuli. Thus, like the Bayesian
agents, the human learners must generalize from their limited input in
order to form a hypothesis about the full language. Unbeknown to the
participants, the output produced during the test phase is passed on to a
new participant, whose production output is in turn passed on to an-
other new participant, and so forth.

3.1.1. Participants
224 participants were recruited through the Figure Eight platform

(https://www.figure-eight.com).5 Participants were paid $3.00 plus up
to $1.92 in bonuses based on the accuracy of their learning (as detailed
below). Ethical approval was granted by the School of Philosophy,
Psychology and Language Sciences at the University of Edinburgh. All
participants provided informed consent.

3.1.2. Stimuli
We adopted the so-called “Shepard circles” (Shepard, 1964) as our

stimulus space (see Fig. 8), which vary continuously in angle and size.
The space was quantized onto an 8 × 8 grid, yielding 64 discrete sti-
muli. The radii vary between 25 pixels and 200 pixels and the angles
vary over 180°. The stimuli closely replicate the Shepard circles used by
Canini, Griffiths, Vanpaemel, and Kalish (2014, Fig. 1, p. 787), who
showed in a multidimensional scaling analysis that participants’ dis-
similarity perceptions of these stimuli are closely correlated with the
Euclidean distance in the 8 × 8 grid. This makes the stimuli well jus-
tified analogs of the abstract meanings used in the model and allows us

to assume that the Euclidean distance in the 8 × 8 grid is an acceptable
approximation of perceived dissimilarity.

The category labels were three-letter nonwords (see Table 1). To
create the labels, we generated all CVC strings, such that the first
consonant letter was not the same as the final one, and then removed
valid English words (e.g., pin). For each of the remaining candidate
labels, we attempted to translate the word into English from each of the
63 languages that use the Latin script in Google Translate. If Google was
unable to offer a translation, we assumed that the label was not a real
word in that language. We then selected 16 unique labels that were
meaningless in as many languages as possible, such that they could be
arranged into four sets of four labels in which any given set used no
letter more than once. Each participant was assigned one set of labels
selected at random, and the mapping between labels and categories was
randomized for every participant. This procedure was designed to mi-
tigate possible interference from native language and to reduce the
possibility of iconic meaning–signal correspondences emerging,

Fig. 7. Each density plot shows how complexity (left) or communicative cost (right) is distributed in the final-generation languages across 100 chains. The dis-
tributions in blue are identical and provide baseline results under the simplicity bias. Likewise, the distributions in red are identical and provide baseline results
under the strong informativeness bias. The distributions in black show what happens when one parameter is manipulated, while holding all other parameters
constant. Chains show greater convergence toward the prior bias when there is more noise, a tighter bottleneck, or fewer exposures. For example, decreasing the
number of exposures from two to one gives rise to simpler languages under the simplicity bias and more informative languages under the informativeness bias. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. The stimulus space varies continuously on two dimensions: the radius of
the circle (x-axis) and the angle at which the line is oriented (y-axis). Each
dimension is quantized into eight discrete values, yielding 64 stimuli.

5 A total of 273 participants began the experiment; one was excluded for
repeatedly clicking the same response button and a further 48 terminated the
experiment prior to completing it.

J.W. Carr, et al. Cognition 202 (2020) 104289

7

https://www.figure-eight.com


potentially making some mappings easier to learn than others (see e.g.,
Nielsen & Rendall, 2012; Nygaard, Cook, & Namy, 2009).

3.1.3. Training procedure
In the training phase, participants were trained on half of the 64

stimuli (i.e., b = 2). These 32 stimuli were selected pseudorandomly
through the same bottlenecking procedure used in the model (see
Fig. 4), which ensures that participants see a representative sample of
meanings from all parts of the space. Training on the 32 items was
repeated four times (i.e., in four blocks; ξ = 4) because initial piloting
indicated that participants would need at least four exposures to per-
form well above chance.

In each training block, the participant was exposed to each of the
training items in random order. In a single trial (see Fig. 9), the stimulus
was presented first, and after a one-second delay, the sentence “This is a
zix” appeared containing the relevant category label; this sentence re-
mained on screen for 3 s, at which point it was replaced by the question
“What is it called?” along with four buttons showing the four possible
labels (the order of the response buttons was randomized on every
trial). If the participant clicked the correct button, the button turned
green; if incorrect, the button turned red and the button for the correct
label turned green. After every fourth training trial (i.e., eight times per
block, 32 times in total), a “mini-test” was inserted. In a mini-test trial,
the participant is shown a previously seen stimulus and asked to supply
a label for it. Feedback was then provided as in regular training trials,
and the participant was awarded $0.02 for every correct mini-test re-
sponse. The purpose of the mini-tests and bonusing scheme was to make

participants highly incentivized to learn the language as well as pos-
sible through active engagement with the training process.

3.1.4. Test procedure
In the test phase, participants were asked to label all 64 stimuli. On

each test trial, a stimulus was presented alongside the question “What is
this called?” (see Fig. 9). After a 1 s delay, the set of four labels ap-
peared below in random order. It was made clear to the participant that
they would be awarded $0.02 for every correct response; however, no
feedback was given during the test phase in order to elicit responses
based on the hypothesis fixed during training.

3.1.5. Transmission procedure
As in the model, the initial participant in a chain was given a ran-

domly generated language to learn. The language they produced during
the test phase was then transmitted to a new participant, subject to the
same bottlenecking procedure as the model. Participants were assigned
to one of 12 chains at random, and chains were run for a minimum of
10 generations. After the 10th generation, we allowed the chains to
continue running until they eventually converged on a particular ca-
tegorization system. Chains were deemed to have converged when two
consecutive participants inferred exactly the same language, suggesting
that the language was especially easy to learn—an attractor in the space
of possible languages.

3.2. Results

Fig. 10 summarizes the converged-on languages and Fig. 11 depicts
the evolution of all 12 chains (labeled A–L) through to convergence. In
two cases, the languages collapsed to a single category; in one case, a
two-category system emerged; and in eight cases, a three-category
system emerged. Only in one case did the language retain all four ca-
tegories (Chain I). Fig. 10 also highlights the category structures that
emerged. In eight cases (dashed black box), a system of contiguous
categories emerged marking distinctions on the angle dimension, while
in two cases (dashed gray box), a system of contiguous categories
emerged marking distinctions on the size dimension. These findings
speak directly to the predictions made by the simplicity prior in the
model: We observe a loss of category distinctions and the emergence of
simple, contiguous category structures that make distinctions on prin-
cipally one dimension. The preference for marking the angle dimension
perhaps reflects some form of saliency bias (e.g., angle jumps out as
being more unusual and therefore more important to mark) or some
form of perceptual bias (e.g., gradations in angle are easier to perceive).

Fig. 12 shows the results under the same four quantitative measures
computed for the model. Results are shown only for the first 10 gen-
erations, for which we have data from all 12 chains. A linear mixed-

Table 1
Category labels.

Set Labels

1 pov reb wud zix
2 gex juf vib wop
3 buv jef pid zox
4 fod jes wix zuv

Fig. 9. Illustration of training and test trials (not to scale). In training trials, the
participant is shown a stimulus and its category label, and after 3 s they are
asked to click the correct label. In mini-test and test trials, the participant is
shown a stimulus and asked to select a category label. Feedback is only pro-
vided in the case of training and mini-test trials.

Fig. 10. The languages that were converged on across all 12 chains (labeled
A–L) grouped by number of categories. Eight of the emergent languages mark
distinctions in angle (dashed black box) and two of the languages mark dis-
tinctions in size (dashed gray box). Refer to Fig. 8 for the stimuli.
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Fig. 11. Evolution of all 12 chains from the experiment (labeled A–L). Each chain starts with a randomly generated language and is followed by the language
produced by each subsequent participant (from left to right; some chains are split across multiple rows). Chains were run for a minimum of 10 generations and then
until two consecutive participants produced identical languages. Refer to Fig. 8 for the stimuli.
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effects regression analysis was used to test for an effect of generation on
each of the four measures with chain as a random effect and by-chain
random slopes for the effect of generation, following the procedure
recommended by Winter and Wieling (2016) and using the R package
lme4 (Bates, Mächler, Bolker, & Walker, 2015). P-values were obtained
by likelihood ratio tests of the full model against a null model without
the effect in question. As predicted by our model simplicity bias,
number of categories (β = − 0.06 ± 0.03, χ2 = 5.19, p = .023),
transmission error (β = − 0.22 ± 0.05, χ2 = 13.22, p < .001), and
complexity (β = − 22.59 ± 6.12, χ2 = 9.67, p = .002) all decreased
with generation. Over time, the languages become structurally simpler
and use fewer categories, and are, as a result, more faithfully trans-
mitted. Contrary to Carstensen et al. (2015), we did not find a decrease
in communicative cost over generations (β = 0.009 ± 0.01,
χ2 = 0.46, p = .499), implying that the languages are not becoming
more informative.

3.3. Model fit

To objectively determine which of the two prior functions offers a
better fit to our experimental dataset D , we calculate the likelihood
that a participant would produce certain output data Dout given certain
input data Din, and then take the product of this value over all6 parti-
cipants:

D
D

=p w p D L( | , , ) ( | ; ),
D D,

out
in out (10)

where p(Dout|L∗;ε) is given by Eq. (2) and L∗ is sampled from p
(L|Din;π,w,ε) following Eq. (8). In other words, for each participant (for
each 〈Din,Dout〉 pair in the dataset), we simulate what language an
agent would infer given the participant’s Din and then calculate the
likelihood of that agent producing the participant’s Dout given that
language. Then, for each of the prior functions, πsim and πinf, we esti-
mate D=w p w, argmax ( | , , )w, , the parameter values that max-
imize Eq. (10). Maximum likelihood estimates were obtained using the
Python package scikit-optimize (Head et al., 2018). ε was bounded in
(0,1). w was bounded in [0,4] for the simplicity prior and [0,1000] for
the informativeness prior. The upper bounds were selected based on
initial experimentation, which indicated that the likelihood would drop
off beyond these values.

The results of the model fit are shown in Fig. 13. For the simplicity
prior, the maximum likelihood estimates are w 1.37sim and .23sim ,
yielding a log likelihood of −11323.09. For the informativeness prior,

the maximum likelihood estimates are w 243.3inf and .37inf ,
yielding a log likelihood of −17283.35. These results tell us that,
overall, the best fit to the experimental data is given by a slightly
strengthened simplicity prior with a noise level of around 23%. For the
informativeness prior, the best fit is obtained by strengthening it sub-
stantially and assuming a noise level of around 37%. The likelihood
ratio is 25960, offering overwhelming evidence that the simplicity prior
gives a better fit to the experimental data than the informativeness
prior.

Rerunning the iterated learning model with the parameter settings
b = 2, ξ = 4 (as fixed by the experiment), =w w , and = (as esti-
mated from the experimental data), we obtain the results shown in
Fig. 14. The experimental results are shown for comparison: Results for
the first 10 generations are reproduced from Fig. 12 and results for the
subsequent 40 generations (dashed line) are estimated based on the
assumption that once a chain fully converges it will experience no
further change.7 These plots confirm that the simplicity prior yields a
general pattern of results that correspond closely to the experimental
evidence.

However, Fig. 14 also reveals two discrepancies between the ex-
periment and the modeled simplicity bias: First, the simplicity prior
results in a rapid, early decrease in complexity (unlike the experiment
where complexity decreases more gradually), and second, it results in

Fig. 12. Experimental results for the first 10 generations. Over time the languages become simpler and begin to use fewer categories. As a result of this simplification,
they become more reliably transmitted from one generation to the next. Communicative cost remains static implying that the languages are not becoming more
informative.

Fig. 13. Model fit results for the simplicity prior (left) and informativeness
prior (right). Each plot shows how the weight and noise parameters affect the
likelihood of observing the experimental dataset. Yellow areas indicate settings
of w and ε that offer a good fit to the experimental data. The black dots show the
maximum likelihood estimates, the parameter values found to maximize Eq.
(10). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

6 The model fit was performed on data from 168 of the 224 participants
(75%). We excluded participants whose transmission error was greater than 3
bits, since including them led to very high estimates of noise and a poor fit
under either of the priors. In other words, for the purpose of the model fit, we
retained only those participants whose productions were not wildly divergent
from their input data.

7 In fact, we would expect to see a further reduction in complexity in the
experimental results were it financially practical to run all 12 chains for 50
generations. Nevertheless, the assumption that chains are unlikely to change
once they converge is not entirely unwarranted: As can be seen in Chains B, C,
and H (see Fig. 11), once a chain fully converges, the category structure tends to
be reliably conserved over subsequent generations.
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high transmission error later in the chains (unlike the experiment where
transmission error tends toward 0 as the languages become very easy to
learn). These discrepancies are a result of our simplistic model of noise,
which is constant over generations and does not capture the fact that
some types of error occur more often than others. In reality, noise ap-
pears to be some function of how complex a language is or how much
confidence a participant has in their hypothesis, and participants are
also more likely to make certain errors over others (e.g., greater con-
fusion at category boundaries). These aspects of the real dynamics are
not captured by our model and could be the subject of future work.

3.4. Summary

Our experiment shows that, when there is only a pressure from
learning, languages evolve to become as simple as possible. Simplicity
is achieved by reducing the number of categories and transitioning
toward contiguous, one-dimensional category structures. These results
are closely aligned with our model simplicity bias; indeed, fitting the
model to the experimental data shows that the results are much better
predicted by a preference for simplicity. Furthermore, unlike
Carstensen et al. (2015), the languages did not become more in-
formative over generational time. The increase in the contiguity of the
categories (spurred on by the preference for simplicity) should in fact
make the languages more informative; but this effect was simulta-
neously countered by the loss of categorical distinctions, which makes
the languages less informative, resulting in a flat line for commu-
nicative cost (see Fig. 12).

4. Discussion

In a variety of typological studies, Regier and colleagues have
shown that communication systems strike a balance between simplicity
and informativeness (e.g., Kemp & Regier, 2012; Khetarpal et al., 2013;
Regier et al., 2015; Xu & Regier, 2014; Xu et al., 2016; Zaslavsky et al.,
2019). However, until recently, this body of work had avoided positing
causal explanations behind this observation (Levinson, 2012, p. 989). In
direct response to that criticism, Carstensen et al. (2015) conducted an
iterated learning experiment purporting to show that the learning of
semantic category systems can contribute to increased informativeness
in such systems. However, this account runs contrary to the iterated
learning literature, which has generally shown that learning alone fa-
vors simple communication systems, with informativeness only emer-
ging in the presence of a shared communicative task (e.g., Kirby et al.,
2015). Such a task was not present in either of the studies described by
Carstensen et al. (2015), so how are we to explain their finding that
informativeness can increase merely as a consequence of iterated
learning?

The answer suggested by Carstensen et al. (2015) is that learners

have an a-priori expectation that languages ought to be informative and
that they are therefore biased toward inferring more informative sys-
tems over less informative systems. If, for example, the evidence pre-
sented to a learner was equally compatible with an informative system
and an uninformative system, this biased learner would infer the in-
formative one. This bias could be quite strong or quite weak, but either
way, when the learning process is repeatedly applied to a language
(iterated learning), it is amplified, gradually nudging the language in
the direction of greater informativeness.

Our alternative answer is perhaps more mundane. As noted earlier,
the authors’ measure of informativeness—communicative cost—is
sensitive to how “structured” the categories are. Specifically, it is sen-
sitive to how compactly the categories are arranged; category systems
in which similar meanings tend to be classified into the same category
are considered more informative than those that do not have such
structure. Putting aside the issue of whether this is a desirable feature of
a measure of informativeness, the problem that arises from this defi-
nition is that such structure could also be described as simple (we re-
turn to this point shortly). Thus, when we observe the emergence of
structured categories, it is not immediately clear whether the languages
are adapting to become more informative or to become more simple. In
short, we argue that Carstensen et al. (2015) have attributed the
emergence of category structure to a pressure for informativeness from
learning, when it can be more parsimoniously attributed to a pressure
for simplicity from learning.

Fig. 15 summarizes our argument. The gray arrows show our gen-
eral theoretical perspective: Pressure from learning alone favors sim-
plicity which is realized as a small number of structured categories,
while pressure from communication alone favors informativeness
which is realized as a large number of structured categories. In the two
studies described by Carstensen et al. (2015), there is, we contend, an
increase in how structured the categories are over generational time,8 a
result that is consistent with the simplicity account (blue arrows) or the
informativeness account (red arrows). However, Fig. 15 also highlights
two important differences between the two accounts. First, the in-
formativeness account requires positing a new learning bias in favor of
informativeness, whereas the simplicity account is aligned with a large
body of prior literature that links learning to simplicity (e.g., Chater
et al., 2015; Chater & Vitányi, 2003; Culbertson & Kirby, 2016;
Feldman, 2016; Kemp, 2012; Li & Vitányi, 2008; Rissanen, 1978;
Solomonoff, 1964). Second, although both accounts predict the emer-
gence of structured categories, they diverge in terms of the number of

Fig. 14. Model results under the simplicity prior (blue) and informativeness prior (red) using parameter values estimated from the experimental data. For com-
parison, the experimental results are shown in black; the dashed part of the line beyond generation 10 is based on the assumption that a chain will not change once it
converges (see main text). Shaded areas show the 95% confidence intervals on the mean. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

8 Indeed, this is the only possible explanation for their finding that commu-
nicative cost decreases over generations. The systems start out with the max-
imum number of categories, which are approximately the same size, so the only
possible way communicative cost can decrease is by restructuring the categories
based on similarity.
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categories that are expected to emerge: A bias for simplicity is expected
to lead to the loss of categorical distinctions, while a bias for in-
formativeness is expected to lead to an increase in the number of such
distinctions. So this raises another question: If our simplicity account is
correct, why did Carstensen et al. (2015) not observe a loss of cate-
gories?

In the case of Study 1 (i.e., Xu et al., 2013), participants were ex-
plicitly forced to use a certain number of categories according to con-
dition, so there could be no category loss because of the particular
design of the original study. In the case of Study 2, various explanations
are possible, but we would suggest that the most likely explanation
relates to the lack of a bottleneck on transmission. Participants were
trained on all of the meanings, not a subset as is typical in iterated
learning studies, so category loss is predicted to occur only very slowly.
To illustrate this, we reran our model approximating the parameters of
Study 2: Agents have an unweighted (w = 1) simplicity prior and see all
of the meanings (b = 4, no bottleneck) in two exposures (ξ = 2). The
results are shown in Fig. 16 under three noise values. If we look only at
the first 10 generations (left), there appears to be a small but sustained
decrease in communicative cost, falling from 5 bits to around 4.7 bits,9

which suggests that the languages are becoming more informative.
However, when the same model is observed over 100 generations
(right), we find that the initial gain in informativeness is gradually
eroded by the loss of categories. This is especially clear when the noise
parameter is higher (e.g., ε = .1), which causes category loss to happen
faster.

When category loss is impeded, as is the case in the two studies
reported by Carstensen et al. (2015), the only way languages can sim-
plify is by reorganizing how the categories are structured. Structure is
achieved by grouping stimuli together based on similarity, and com-
municative cost measures this as an increase in informativeness. Cru-
cially, we argue that this outcome—increased informativeness—is not
due to an inductive bias in favor of informativeness; it arises merely as a
byproduct of increased simplicity.

The idea that compact structure is a form of simplicity has been
argued in a number of places. For example, Gärdenfors’s (2000, p. 70)
motivation for the naturalness of convexity (a correlate of compactness)
is rooted in cognitive economy: “I believe that [convexity] can be de-
fended by a principle of cognitive economy; handling convex sets puts
less strain on learning, on your memory, and on your processing ca-
pacities than working with arbitrarily shaped regions.” This view is
supported by various studies showing how the application of a sim-
plicity principle in learning favors a compact structural arrangement of
concepts (Pothos, Chater, & Hines, 2009; Sims, 2018; Steinert-Threlkeld
& Szymanik, 2020). Indeed, Richie (2016, p. 457) has also made this
point in direct reference to Carstensen et al. (2015), describing the
authors’ findings as a “happy accident” arising from the “basic opera-
tion of categorization.”

It could, of course, be argued that humans have biases for both
simplicity and informativeness. However, the point we wish to make in
this paper is that a simplicity bias alone can already explain the de-
crease in communicative cost observed by Carstensen et al. (2015), and
since a domain-general bias for simplicity is very well motivated the-
oretically and empirically, this explanation should be preferred over
positing an additional domain-specific bias for informativeness in lan-
guage learning. This effectively means we are raising the bar on the
evidence required to show that learning produces informative lan-
guages; evidence for this position must first rule out explanations from
simplicity.

To complicate the issue further, there are at least two ways compact
structural arrangements could in principle emerge from communicative
pressure for informativeness, as we acknowledge in Fig. 15. First, if the
payoff from a communication game is not binary but related to the
similarity between the speaker’s intended meaning and the listener’s
inferred meaning (see e.g., Lantz & Stefflre, 1964), then interaction can
provide pressure for compact structural representations. For example,
Jäger and van Rooij (2007) have shown in agent-based simulations that
compactly arranged color concepts can arise from a desire to minimize
potential error in communication. Second, when faced with labeling a
novel stimulus, speakers tend to assign the stimulus to an established
category on the basis of similarity (e.g., Markman & Makin, 1998) in
order to maximize the probability of aligning with a listener, providing
another route through which interaction can lead to compact structure.
These lines of evidence have led Warglien and Gärdenfors (2011) to
promote a view in which both learning and communication contribute
to structured categories.

The extent to which category structure derives from learning versus
communication remains somewhat unclear. However, Silvey, Kirby,
and Smith (2019) have tackled precisely this issue by comparing results

Fig. 15. Gray arrows show our general theoretical perspective: Pressure from learning alone favors simplicity which is realized as a small number of structured
categories, while pressure from communication alone favors informativeness which is realized as a large number of structured categories. Carstensen et al., 2015
posit that learning might act as a pressure for informativeness, and this hypothesis is seemingly confirmed by the emergence of structured categories (red arrows).
Our explanation says that this emergent structure is more likely to come directly from a pressure for simplicity (blue arrows). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Results for communicative cost under the simplicity prior for three
settings of ε. As in Carstensen et al. (2015, Study 2), agents get two exposures
(ξ = 2) to all of the meanings (b = 4). Over the course of 10 generations (left),
the languages become more informative due to the structural simplification
fostered by the simplicity prior. However, so long as ε > 0, category loss—and
therefore the erosion of this informativeness gain—is inevitable over a longer
period of time (e.g., 100 generations; right). Increasing the noise level speeds
the simplification process up.

9 Compare with Carstensen et al. (2015, Fig. 5) where the decrease in com-
municative cost is similarly small, dropping from around 5.8 bits to 5.5 bits.
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from (a) individual categorization, (b) communication games, (c) iter-
ated learning, and (d) iterated learning with communication games.
Among other things, the authors found that “communication alone does
not appear to be the best way to create category systems that are
communicatively effective” (p. 13); rather, the presence of (iterated)
learning results in compactly structured categories that are effective for
communication as a side-effect. They therefore argue that “commu-
nication is neither necessary nor sufficient” (p. 15) to explain the
compact structure of semantic categories.

Finally, one potential criticism of this paper is that our stimuli are
quite different from those used in Carstensen et al. (2015), especially in
terms of the integral–separable distinction. “Integral dimensions are
those that combine into relatively unanalyzable, integral wholes”
(Nosofsky, 1986, p. 40); for example, when perceiving color, humans
integrate information about hue, saturation, and brightness. In contrast,
“separable dimensions are highly analyzable and remain psychologi-
cally distinct when in combination” (Nosofsky, 1986, p. 40), the She-
pard circles being classic examples of such stimuli, since the angle and
size features can be perceived and categorized separately. Both of
Carstensen et al.’s (2015) studies use stimuli with integral dimensions
(color and spatial relationships), which raises the possibility that our
results might not offer a fair comparison to their work.

However, our choice of separable dimensions was, in fact, a delib-
erate one. To see why, imagine we had designed our model and ex-
periments around an integral space (e.g., color space). In such a space,
the rectangle code would not be an appropriate measure of complexity;
instead, a reasonable measure of complexity might be based around
storing prototypes (see e.g., Pothos et al., 2009, for an example of such
an approach). When plugged into our model, this definition of simpli-
city would favor categories that have a compact, but multidimensional,
structural organization. Such structure (which we just motivated by a
preference for simplicity) would be indistinguishable from the structure
predicted by the informativeness bias as formalized by communicative
cost. Separable stimuli make it easier to distinguish between the pre-
dictions of an informativeness bias (maintenance of the four categories
with a tendency toward the quadrant partition) versus the predictions
of a simplicity bias (loss of categories with a tendency toward striped
partitions).

5. Conclusion

There is a long tradition in the cognitive and language sciences of
explaining the structural properties of language in terms of the sim-
plicity–informativeness tradeoff. Broadly speaking, we view the pres-
sure for simplicity as deriving from learning and the pressure for in-
formativeness as deriving from communicative interaction. When
languages are both learned and used, they find a balance between being
sufficiently simple and sufficiently informative. However, at least two
studies (Carstensen et al., 2015; Fedzechkina et al., 2012) have sug-
gested that human learners might have an inductive bias not just for
simplicity but also for informativeness, short-circuiting the need for
interaction as a necessary condition in the emergence of informative
languages. We formalized this hypothesis in terms of an iterated
learning model with Bayesian category learners and tested it in an ex-
perimental analog of that model. This tight combination of model and
experiment allowed us to fully explicate the two positions and test them
objectively.

Our findings supported the status quo: The human inductive bias is
better characterized by a preference for simplicity, not informativeness.
Furthermore, we showed how the application of a simplicity principle
in learning could explain the apparently contradictory results described
by Carstensen et al. (2015): Under a bias for simplicity, iterated
learning gives rise to simple category systems that happen to have one
of the hallmark features of an informative category system—a compact
structural organization. Thus, although it is true that informativeness,
when defined a particular way, can emerge through iterated learning,

this does not imply that learners have a domain-specific bias for in-
formativeness. Given that the stated aim of Carstensen et al. (2015, p.
303) was to “establish what process gives rise to the diverse attested
systems of informative categories,” this is an important distinction to
make.

Treating learning and communication separately allows us to elu-
cidate the unique contribution that each pressure makes to the structure
of language, this paper being primarily concerned with the contribution
that learning makes. However, considering the two pressures together
reveals the interesting ways in which learning and interaction can work
together. Frank, Goodman, Lai, and Tenenbaum (2009, p. 1228) argue
that “communicators choose what they want to say by how informative
it would be about their intended meaning;” thus, the data from which
learners typically induce simple hypotheses is often explicitly designed,
by the speaker, to be informative in a given context. This suggests an
important role for pragmatics in shaping language; the true source of
informativeness may lie in the production of data for an audience (as
argued by Kirby et al., 2015) and in a given context (as argued by
Winters et al., 2018). In this sense, informativeness does ultimately
derive from a cognitive source, but that source is pragmatic reasoning,
not learning.
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