The cumulative cultural evolution of category structure in an open-ended meaning space

Jon W. Carr
School of Philosophy, Psychology and Language Sciences
University of Edinburgh

Hannah Cornish
Department of Psychology
University of Stirling

Simon Kirby
School of Philosophy, Psychology and Language Sciences
University of Edinburgh
Recap of Kirby et al. (2008)

Showed that the cultural transmission of language can give rise to the same structural properties we find in natural languages.

The meanings form a $3 \times 3 \times 3$ space in which each of three dimensions vary over three discrete categories.

But this is not a realistic representation of the real world.

The human conception of the world is higher-dimensional, continuous, and open-ended.
Continuous spaces in previous work

Matthews (2009)

Silvey, Kirby, & Smith (2013)

Perfors & Navarro (2011)
Triangle stimuli
Linguistic stimuli

Initial word sets generated randomly from the set of consonants \{d, f, k, m, p, z\} and the set of vowels \{a, i, o, u\}

Words consisted of between 2 and 4 syllables

The presentation of the words was accompanied by a vocal rendition produced with a speech synthesizer
Procedure

WORD SET 1
DYNAMIC SET 1
Training data

Test phase (interleaved)

DYNAMIC SET 2
WORD SET 2
DYNAMIC SET 2

Test phase (interleaved)

WORD SET 1'

DYNAMIC SET 1'

WORD SET 2'

STABLE SET
Procedure

WORD SET 2
DYNAMIC SET 2
Training data

Test phase (interleaved)

DYNAMIC SET 3

Stable SET

WORD SET 2'

etc...

etc...

etc...
Experiment interface: Training

Three stimuli presented from the dynamic set for 5 seconds each
Experiment interface: Training

“mini test” on one of the previous three stimuli

Type in the word for the triangle and press enter.
Experiment interface: Training

feedback on correct answer
Experiment interface: Training

- each item mini-tested once
- each item presented three times
- 144 total presentations
Experiment interface: Testing

- 48 items from stable set
- 48 items from dynamic set
- interleaved
Measure of learnability

Transmission error is used as a proxy for learnability

Measured only on the stable set of items for consistency across generations

Greater error in predicting the words that the previous participant applied to items in the stable set implies a less learnable language (and vice versa)

Transmission error is the mean normalized Levenshtein distance:

\[
E(i) = \frac{1}{|M|} \sum_{m \in M} \frac{\text{LD}(s_i^m, s_{i-1}^m)}{\max(\text{len}(s_i^m), \text{len}(s_{i-1}^m))}
\]
Measure of structure

The languages are essentially mappings between signals and meanings.

To measure structure, we correlate the dissimilarity between pairs of strings with the dissimilarity between pairs of triangles for all $n(n-1)/2$ pairs.

We then perform a Mantel test (Mantel, 1967) which compares this correlation against a distribution of correlations for 50,000 Monte-Carlo permutations of the signal-meaning pairs.

This yields a standard score (z-score) quantifying the significance of the observed correlation.

Normalized Levenshtein distance used to measure the dissimilarity between pairs of strings.
Triangle dissimilarity metric

The dissimilarity between two triangles is taken as the sum of Euclidean distances between vertices

\[d_T(A, B) = d_E(A_1, B_1) + \min[d_E(A_2, B_2) + d_E(A_3, B_3), d_E(A_2, B_3) + d_E(A_3, B_2)] \]
Triangle dissimilarity metric

The dissimilarity between two triangles is taken as the sum of Euclidean distances between vertices

\[d_T(A, B) = d_E(A_1, B_1) + \min[d_E(A_2, B_2) + d_E(A_3, B_3), d_E(A_2, B_3) + d_E(A_3, B_2)] \]
The dissimilarity between two triangles is taken as the sum of Euclidean distances between vertices

\[d_T(A, B) = d_E(A_1, B_1) + \min\left[d_E(A_2, B_2) + d_E(A_3, B_3), d_E(A_2, B_3) + d_E(A_3, B_2)\right] \]
Triangle dissimilarity metric

The dissimilarity between two triangles is taken as the sum of Euclidean distances between vertices

\[d_T(A, B) = d_E(A_1, B_1) + \min[d_E(A_2, B_2) + d_E(A_3, B_3), d_E(A_2, B_3) + d_E(A_3, B_2)]\]
Triangle dissimilarity metric

d_T up to translation: The triangles are translated to the same location in the plane based on their centroids
Triangle dissimilarity metric

d_T up to rotation: The triangles are rotated around their centroids so that they both “point” upwards.
Triangle dissimilarity metric

d_T up to scale: The triangles are scaled around their centroids so that they have equal perimeter.
Triangle dissimilarity metric

d_T up to scaled rigid motion: The triangles are translated to the same location, rotated to the same direction, and scaled to the same size.
Triangle dissimilarity metric

List of eight triangle distance metrics alongside the geometrical properties that they ignore and consider

<table>
<thead>
<tr>
<th>Distance metric</th>
<th>Properties ignored</th>
<th>Properties considered</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_T</td>
<td>—</td>
<td>shape, location, orientation, size</td>
</tr>
<tr>
<td>d_T up to translation</td>
<td>location</td>
<td>shape, orientation, size</td>
</tr>
<tr>
<td>d_T up to rotation</td>
<td>orientation</td>
<td>shape, location, size</td>
</tr>
<tr>
<td>d_T up to scale</td>
<td>size</td>
<td>shape, location, orientation</td>
</tr>
<tr>
<td>d_T up to rigid motion</td>
<td>location, orientation</td>
<td>shape, size</td>
</tr>
<tr>
<td>d_T up to scaled translation</td>
<td>location, size</td>
<td>shape, orientation</td>
</tr>
<tr>
<td>d_T up to scaled rotation</td>
<td>orientation, size</td>
<td>shape, location</td>
</tr>
<tr>
<td>d_T up to scaled rigid motion</td>
<td>location, orientation, size</td>
<td>shape</td>
</tr>
</tbody>
</table>
Hypotheses

Hypothesis 1: the languages will become increasingly learnable over the course of the cultural generations

Hypothesis 2: categorical structure will emerge as a mechanism for circumventing the bottleneck on transmission

Hypothesis 3: given that Hypothesis 1 and Hypothesis 2 are supported, an increase in learnability will be explained by an increase in structure
Results: Unique strings

The number of unique strings in the dynamic and stable sets over the 10 generations for each chain

![Graph showing the number of unique strings over generations for different chains](image-url)
Results: Learnability

Transmission error over 10 generations for each chain
Results: Structure

Structure results for the eight triangle dissimilarity metrics

Two metrics stand out in particular
- d_T up to rigid motion
- d_T up to scaled rigid motion

These are the metrics that consider shape and size

Chain A Chain B
Chain C Chain D
Results: Structure

d_T up to rigid motion

d_T up to scaled rigid motion

Chain A

Chain B

Chain C

Chain D
Results: Categorical structure
Results: Categorical structure
Results: Summary

Hypothesis 1: the languages will become increasingly learnable

\[L = 1514, \ m = 4, \ n = 10, \ p < 0.001 \]

Hypothesis 2: categorical structure will emerge as a mechanism for circumventing the bottleneck on transmission

\[L = 1461, \ m = 3, \ n = 11, \ p < 0.001 \ (dt \ up \ to \ rigid \ motion) \]
\[L = 1470, \ m = 3, \ n = 11, \ p < 0.001 \ (dt \ up \ to \ scaled \ rigid \ motion) \]

Hypothesis 3: an increase in learnability can be explained by an increase in structure

\[r = 0.479, \ n = 36, \ p = 0.002 \]
Results: Sound symbolism

Mean pointedness of triangles whose associated words contain phoneme X

![Bar chart showing pointedness for different phonemes over generations 0 and 6-10.](chart)

- Generation 0 (baseline)
- Generation 6—10

Phonemes: \(\alpha, i, \omega, u, d, f, k, m, p, z \)
Summary

Experimental demonstration that categorical structure can arise from iterated learning

The meaning space has four key properties:

- **Continuous**: On each dimension, the triangle stimuli vary over a continuous scale

- **Vast in magnitude**: 6×10^{15} possible triangle stimuli, vastly more than previous experiments

- **Complex dimensions**: Many possible dimensions to the space

- **Not pre-specified by the experimenter**: no particular hypothesis about which features participants would find salient
Conclusions

Iterated learning in simple linear diffusion chains can give rise to categorical structure despite the fact that:

- stimuli never reoccur across participants
- there is no communicative pressure for expressivity

Although separate chains divided the space in subtly-different but lineage specific ways, participants showed a bias towards the shape and size properties

This suggests that iterated learning amplifies weak cognitive biases, giving rise to the categorical structure we observe in languages

Learnability

Transformation of transmission error scores to account for chance

$L = 1038, m = 4, n = 9, p < 0.001$
Emergent language in chain A (gen 9)
Emergent language in chain C (gen 8)