Convexity and expressivity in the simplicity–informativeness tradeoff

Jon W. Carr, Kenny Smith, Jennifer Culbertson, Simon Kirby

Centre for Language Evolution
School of Philosophy, Psychology and Language Sciences
University of Edinburgh
Pressures shaping language

Language
Pressures shaping language

Learning → Simplicity → Language
Pressures shaping language

The simplicity–informativeness tradeoff
Kinship terms are simple and informative

Kinship Categories Across Languages Reflect General Communicative Principles
Charles Kemp and Terry Regier

Languages vary in their systems of kinship categories, but the scope of possible variation appears to be constrained. Previous accounts of kin classification have often emphasized constraints that are specific to the domain of kinship and are not derived from general principles. Here, we propose an account that is founded on two domain-general principles: Good systems of categories are simple, and they enable informative communication. We show computationally that kin classification systems in the world’s languages achieve a near-optimal trade-off between these two competing principles. We also show that our account explains several specific constraints on kin classification proposed previously. Because the principles of simplicity and informativeness are also relevant to other semantic domains, the trade-off between them may provide a domain-general foundation for variation in category systems across languages.

Concepts and categories vary across cultures but may nevertheless be shaped by universal constraints (1–4). Cross-cultural studies have proposed universal constraints that help to explain how colors (5, 6), plants, animals (7, 8), and spatial relations (9, 10) are organized into categories. Kinship has traditionally been a prominent domain for studies of this kind, and researchers have described many constraints that help to predict which of the many logically possible kin classification systems are encountered in practice (11–15). Typically, these constraints are not derived from general principles, although it is often suggested that they are consistent with cognitive and functional considerations (2, 11–13, 15).

Here, we show that major aspects of kin classification follow directly from two general principles. Categories tend to be simple, which minimizes cognitive load, and to be informative, which maximizes communicative efficiency. Principles like these have been discussed in other contexts by previous researchers (16–19). For example, Zipf suggested that word-frequency distributions achieve a trade-off between simplicity and communicative precision (20, 21), Hawkins (22) has suggested that grammars are shaped by a trade-off between simplicity and communicative efficiency, and Rosch has suggested that category systems “provide maximum information with the least cognitive effort” (p. 190 of (23)).

Figure 1A shows a simple communication game that helps to illustrate how kin classification systems are shaped by the principles of simplicity and informativeness. The speaker has a specific relative in mind and utters the category label for that relative. Upon hearing this category label, the hearer must guess which relative the speaker had in mind. If the speaker and hearer communicate through a kin classification system that achieves a near-optimal trade-off between simplicity and informativeness, the hearer is likely to be able to make a correct guess and quickly determine the correct relative.
Kinship terms are simple and informative

Informative Simple

Kemp & Regier (2012)
Learning vs. Communication

Iterated learning
Learning vs. Communication

Iterated learning

Communication
Learning vs. Communication

Iterated learning

Iterated learning & Communication
Learning and communication pressures

Informative

Simple
Learning and communication pressures

Informative

Simple
Learning and communication pressures

Informative

Simple

learning

communication
Learning and communication pressures
Learning and communication pressures

Kirby, Cornish, & Smith (2008)

Kirby, Tamariz, Cornish, & Smith (2015)

Kirby, Tamariz, Cornish, & Smith (2015)
Simplicity
The Minimum Description Length principle

$$DL(H|D) = DL(D|H) + DL(H)$$
The Minimum Description Length principle

\[
DL(H|D) = DL(D|H) + DL(H)
\]

\[
\text{posterior}(H|D) = \text{likelihood}(D|H) \times \text{prior}(H)
\]
The Minimum Description Length principle

\[\text{DL}(H|D) = \text{DL}(D|H) + \text{DL}(H) \]

\[\text{posterior}(H|D) = \text{likelihood}(D|H) \times 2^{-\text{DL}(H)} \]
The Minimum Description Length principle

\[DL(H|D) = DL(D|H) + DL(H) \]

\[\text{posterior}(H|D) = \text{likelihood}(D|H) \times 2^{-DL(H)} \]

Any regularities in data can be used to compress that data
The more regularities there are, the more the data can be compressed
The Minimum Description Length principle

\[DL(H|D) = DL(D|H) + DL(H) \]

For example...

010010111110010001100010010110110001111010001
print('010010111110010001100010010110110001111010001')

010010111110010001100010010110110001111010001
print('01'*24)
The Minimum Description Length principle

$$DL(H|D) = DL(D|H) + DL(H)$$

$$\text{posterior}(H|D) = \text{likelihood}(D|H) \times 2^{-DL(H)}$$

Any regularities in data can be used to compress that data
The more regularities there are, the more the data can be compressed
We equate learning with finding regularity: The more the data can be compressed, the more we have learned from that data
In other words, the more regularity we can identify, the more we have understood (learned) about the process generating the data
The Minimum Description Length principle

\[DL(H|D) = DL(D|H) + DL(H) \]
The Minimum Description Length principle

\[DL(H|D) = DL(D|H) + DL(H) \]
Bayesian model
Conceptual spaces

Dimension 1

Dimension 2
Conceptual spaces
Conceptual spaces
Bayesian inference

\[\mathcal{L} = \{ \text{image tiles} \} \]
Bayesian inference

\[\mathcal{L} = \{ \ldots \} \]

\[D = [\langle m_1, s_1 \rangle, \langle m_2, s_2 \rangle, \langle m_3, s_3 \rangle, \ldots, \langle m_n, s_n \rangle] \]
Bayesian inference

\[\mathcal{L} = \{ \ldots \} \]

\[D = [\langle m_1, s_1 \rangle, \langle m_2, s_2 \rangle, \langle m_3, s_3 \rangle, \ldots, \langle m_n, s_n \rangle] \]

\[
\text{likelihood}(D|L) \propto \prod_{\langle m, s \rangle \in D} \frac{1}{|M|} P(s|L, m)
\]

=
Bayesian inference

\[\mathcal{L} = \{ \ldots \} \]

\[D = [\langle m_1, s_1 \rangle, \langle m_2, s_2 \rangle, \langle m_3, s_3 \rangle, \ldots, \langle m_n, s_n \rangle] \]

\[
\text{likelihood}(D|L) \propto \prod_{(m,s) \in D} \frac{1}{|M|} P(s|L,m) = 2^{-DL(L)}
\]

\[
\text{prior}(L) \propto 2^{-DL(L)}
\]
Bayesian inference

\[\mathcal{L} = \{ \ldots \} \]

\[D = [\langle m_1, s_1 \rangle, \langle m_2, s_2 \rangle, \langle m_3, s_3 \rangle, \ldots, \langle m_n, s_n \rangle] \]

\[
\text{likelihood}(D|L) \propto \prod_{\langle m, s \rangle \in D} \frac{1}{|M|} P(s|L, m) = \]

\[
\text{prior}(L) \propto 2^{-DL(L)} > \]

\[
\text{posterior}(L|D) = \text{likelihood}(D|L) \times \text{prior}(L) > \]
Computing DL(L): The rectangle code

Computing DL(L): The rectangle code

Bayesian iterated learning
Bayesian iterated learning
Bayesian iterated learning
Iterated learning converges to the prior

Expressivity

Complexity
Informativeness
Regier et al.‘s informativeness model
Regier et al.’s informativeness model
Regier et al.’s informativeness model
Regier et al.’s informativeness model
Communicative cost

\[C_j(i) \propto \sum_{c \in C_j} e^{-\gamma d(i,c)^2} \]

\[K(\mathcal{L}) := \sum_{i \in U} P(i) \cdot -\log C(i) \]

Expressivity A system of many categories is more informative than a system of few categories

Compactness A system of compact categories is more informative than a system of noncompact categories
Can iterated learning give rise to informative languages?

Language evolution in the lab tends toward informative communication

Alexandra Carstensen
Jing Xu
Cameron T. Smith
Terry Regier

University of California, Berkeley, CA 94720 USA

Abstract

Why do language-based human experiences come in categories? The ways that we handle language vary widely in their category systems, but what causes the variation is not clear. One possibility is that this systematic variation reflects universal communicative needs. Consistent with this idea, it has been shown that universal category systems tend to support highly informative communication. However, it is also possible that human communication is driven by other processes or systems. Here we show that human simulations of cultural transmission in the lab produce systems of semantic categories that converge toward greater informativeness. In the domain of color and spatial relations, these findings suggest that cross-cultural cultural transmission over historical time could have produced the diverse yet informative category systems found in the world’s languages.

Keywords: Subtractive communication, language evolution, language learning, cultural transmission, spatial cognition, color naming, semantic universals

The origins of semantic diversity

Language varies widely in its fundamental units of meaning—the concepts and categories they encode—in single words. For example, some languages use a single word to encode a concept, while others use multiple words. The origins of this diversity are not well understood. Regier’s (2012) simple step-by-step process, Levinson (2012) points out, although that research explains cross-language semantic variation in communicative terms, it does not tell us “where our categories come from” (p. 290). This is because it does not establish what process gives rise to the diverse range of systems of informative categories. Levinson suggested that a possible answer to this question lies in a list of cultural simulations that explore human simulations of cultural transmission in the laboratory, and "shows how categories get honed through iterated learning across simulated generations" (p. 290). We agree that prior work exploring cross-language semantic variation in terms of communicative information has not yet addressed this central question, and we address it here.

Iterated learning and category systems

The general idea behind iterated learning studies is that a chain or sequence of learners. The first person in the chain produces some behavior; the next person in the chain observes that behavior, learns from it, and then produces behavior of her own; that learned behavior is then observed by the next person in the chain, who learns from it, and so on. This experimental paradigm is meant to capture instances of the transmission and generation of cultural knowledge, the simulation of behavior, and the iterative learning of cultural systems. In this study, we address the question of how iterated learning can give rise to more informative language systems.
Can iterated learning give rise to informative languages?

Carstensen, Xu, Smith, Regier (2015)
Experiments
Training phase

Stage 1: Training

15 minutes

You are going to learn a simple language. We will train you on 4 words in the language and we will test how well you are learning the words. Try to learn the language as well as you can and aim to be accurate in your answers. You will receive a 2€ bonus payment for every correct test answer. If you decide to stop the task, please click the "next" button so that someone else can take part.
Training phase

This is a zix
Stage 2: Test

5 minutes

You have now completed the training stage! Next we will test you on the language that you just learned. For each picture, try to click on the correct word. You will get a 2c bonus payment for every correct answer. It is therefore possible to earn up to $1.28 in this stage of the task. However, this time we will not tell you if you are correct or incorrect. You will find out at the end how many you got correct.

START
Test phase
Stimuli

<table>
<thead>
<tr>
<th>Angle</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stimuli

Angle

Size
<table>
<thead>
<tr>
<th>Angle</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

Stimuli
Which is easiest to learn?

Angle-only

Size-only

Angle & Size
Results

Angle-only
Results

Size-only
Result: Learnability advantage for the less informative systems
Experiment 2
Iterated learning with humans
Iterated learning with humans
Iterated learning with humans
Two ways of achieving simplicity

Increase in convexity
Two ways of achieving simplicity

Decrease in expressivity

Increase in convexity
Two ways of achieving simplicity

Increase in convexity

increases informativeness

Decrease in expressivity

decreases informativeness
Conclusions

Languages are shaped in the simplicity–informativeness tradeoff by pressures from learning and communication.

Learning contains a simplicity bias to prevent overfitting noise, and to aid reasoning about unseen meanings.

Iterated learning converges to the prior bias, favouring languages that are as simple as possible:

- **Loss of expressivity**: Loss of words/concepts to aid learning.
- **Convex categories**: Reorganization of the space to aid learning.

In the process, some informativeness may come along for the ride, potentially obscuring the causal mechanism in experimental work.
Vielen Dank!